İNCE FILM Cu$_x$S/CdS GÜNEŞ PİLLERİ

YÜKSEK LİSANS TEZİ
Atom ve Molekül Fiziği Anabilim Dalı

T.C.
SELÇUK ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTITÜSÜ

HALUK ŞAFAK
Fizik Mühendisi

Jüri Üyeleri

Prof. Dr. Remzi ENGİN
Prof. Dr. Nizamettin ARMAĞAN
Prof. Dr. Salih XILDIIZ

KONYA, 1989
ÖZ

ABSTRACT

The civilization level that the mankind reached today has changed man's life style. Technology and industry, in spite of many important problems came together by them, entered to all areas of the life, brought practical answers to every question encountered and ensured great easinesses in fulfilling everyday's necessities. However, this technological construction in a complete sense, is dependent upon energy and in absence of it, all life would have a stroke.

In this work, the energy sources from those a vital important element in man's life, energy is obtained, have been reviewed and the solar energy which lies among the alternative energy sources that are precautions opposite to the risk of being exhausted of present's sources have been discussed. Especially, the cells developed for obtaining electricity from solar energy had been studied, the operating manners, principal features and preparation techniques of this cells have been described. Among these cells, because of many important properties, the thin film Cu_xS/CdS structures have added too much interest and held many researchs. For this reason, in this work, the properties of Cu_xS/CdS solar cells, the factors affecting the cell, decomposition and breakdown processes and the conversion efficiency being a measure of power could be obtained from cells have been studied. For such a cell and local illumination intensities, under some approximations, the cell conversion efficiencies theoretically had been calculated.
ÖNSÖZ

Bu çalışma, Selçuk Üniversitesi Fen Bilimleri Enstitüsüne, Yüksek Lisans Tezi olarak sunulmuştur. Çalışmada, son yıllarda önemli bir sorun olarak kendini göstermeye başlayan enerji kaynaklarının tükenme tehlikesi ve bunun ortaya çıkarabileceği güçlükler karşısında, mevcut enerji kaynaklarının iyileştirilmesi ve alternatif enerji kaynaklarının bulunması konusundaki çalışmalar- dan güneş enerjisi üzerindeki araştırmalar ele alınmış, özellikle bazı üstünlüklerinden dolayı bilim adamlarının ilgisini çekmeye devam eden ince film Cu_xS/CdS yapı- lar incelenmiştir. Bu çalışmada, maddi ve manevi hiç bir yardımcı esirgemeyen, Danışmanım, Prof. Dr. Remzi ENGİN'e ve ayrıca kaynak edinme ediminde büyük yardımcıları dokunan Yrd. Doç. Dr. Haldun KARABİYIK’a sonsuz teşekkürlerim bir borç bilirim. Tezim, bu konuda çalışma yapanlara en ufak bir yardımcı dokunursa amacına ulaşmış sayıılır.

Haluk ŞAFAK
KONYA, 1989.
<table>
<thead>
<tr>
<th>İÇİNDEKİLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖZ</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ÖNSÖZ</td>
</tr>
<tr>
<td>I. GİRİŞ</td>
</tr>
<tr>
<td>II. GÜNÈŞ İŞIMASI VE FOTOVOLTAİK DÖNÜŞÜM</td>
</tr>
<tr>
<td>2.1. Giriş</td>
</tr>
<tr>
<td>2.2. Güneş Sabiti</td>
</tr>
<tr>
<td>2.3. Dünya Atmosferinin Etkisi</td>
</tr>
<tr>
<td>2.4. Fotovoltaik Dönüşümün Rolü</td>
</tr>
<tr>
<td>2.5. Güneş Pili</td>
</tr>
<tr>
<td>III. İNCE FİLM HAZIRLAMA YÖNTEMLERİ</td>
</tr>
<tr>
<td>3.1. Giriş</td>
</tr>
<tr>
<td>3.2. Vakum Bıharlaştırma Yöntemi</td>
</tr>
<tr>
<td>3.2.1. Sıcak-Duvar Bıharlaştırma</td>
</tr>
<tr>
<td>3.2.2. Reaktif Bıharlaştırma</td>
</tr>
<tr>
<td>3.3. Spray Pyrolysis Yöntemi</td>
</tr>
<tr>
<td>3.3.1. Tarihi Gelişimi</td>
</tr>
<tr>
<td>3.3.2. Spray Pyrolysis Yöntemi</td>
</tr>
<tr>
<td>3.3.3. Kimyasal Spray Çökeltme</td>
</tr>
<tr>
<td>3.4. Sputtering Yöntemleri</td>
</tr>
<tr>
<td>3.4.1. Glow-Boğalma Sputtering</td>
</tr>
<tr>
<td>3.4.2. Magnetron Sputtering</td>
</tr>
<tr>
<td>3.4.3. İyon Demet Sputtering</td>
</tr>
<tr>
<td>3.4.4. İyon Kaplama</td>
</tr>
<tr>
<td>3.4.5. Reaktif Sputtering</td>
</tr>
<tr>
<td>3.5. Kimyasal Bıhar Çökeltme Yöntemi</td>
</tr>
<tr>
<td>3.6. Değişim(Exchange) Reaksiyonları</td>
</tr>
<tr>
<td>3.7. Elektroçökeltme Yöntemi</td>
</tr>
</tbody>
</table>
3.8. Elektroforesis Yöntemi

IV. \(\text{Cu}_x/\text{CdS} \) GÜNEŞ PİLLERİ
4.1. \(\text{Cu}_x \) ve \(\text{CdS} \) Ün Özellikleri
4.1.1. \(\text{Cu}_x \) Tabakalar
4.1.1a \(\text{Cu}_x \) Üzerindeki Yüzey Yenidenbirleşme
4.1.1b \(\text{Cu}_x \) Tabakasının Topografisi
4.1.1c \(\text{Cu}_x \) Tabakaların Stokiyometrisi
4.1.2. \(\text{CdS} \) İnce Filmler
4.2. \(\text{Cu}_x/\text{CdS} \) İnce Film Güneş Pilleri
4.2.1. Hücre Geometrisi
4.2.2. Hücrelerin Mikroyapısı
4.2.3. Fotovoltaik Özellikler
4.2.4. \(\text{Cu}_x/\text{CdS} \) Yapıların Kararlılığı
4.2.5. \(\text{Cu}_x/\text{CdS} \) yapılarının Üstünlük ve Eksiklikleri

V. \(\text{Cu}_x/\text{CdS} \) GÜNEŞ PİLLERİNDE VERİM HESABI
5.1. Güneş Pillerinde I-V Eğrisinin Tayini
5.2. I-V Karakteristiklerinden Verim Hesabı
5.3. \(\text{Cu}_x/\text{CdS} \) Hücrelerin Veriminin Hesaplanması
5.3.1. Amaç
5.3.2. Yöntem
5.3.3. SONUÇLAR

KAYNAKLAR

ÖZGECMİŞ

EK A. Konya Bölgesi İçin Güneş Işıma Şiddetleri
I. GİRİŞ

1960 ve 70 li yıllar, insanoğlunun enerji ve enerji kaynaklarına bakış açısının önemli ölçüde değişmeye başladığı yıllar olmuştur. Bu dönemde artık, dünya üzerindeki enerji kaynaklarının sınırsız olduğu kanısı yok olmuş, bu kaynakların tükenme tehlikesine karşı alınabilecek önlemler ve bu kaynakların yerini alabilecek alternatif enerji kaynakları üzerinde yoğun araştırma ve çalışmalar yapılmaga başlanmıştır. Artan nüfus ve gelişen teknolojinin getirdiği sürekli yükselen enerji talebi de bu konudaki çalışmalarını hızlandırmış, önemli hale getirmiştir.

Söz konusu edilen bu nedenlerden dolayı, konvansiyonel (alışılmış) enerji kaynaklarının yerini alabilecek alternatif kaynaklar bulabilmek ve bunlardan olabildiğince az maliyet ve yüksek bir verim ile yararlanmak hayatı öneş sahiptir. Alternatif enerji kaynakları, nükleer fizyon, nükleer füzyon, güneş enerjisi, rüzgar enerjisi, jeotermal ve hidroelektrik enerji şeklinde farklı tıplerde sıralanabilir. Ancak bunların hiçbirisi, yalnız başına, mevcut ve gelecekteki enerji gereksinimlerini karşılayabilme olanağına sahip değildir.
Yapılan çalışmalar arasında Güneş Enerjisi en ilgi toplayanlardandır. Özellikle güneş enerjisinden elektrik enerjisi elde edilmesi yoluyla yararlanma, oldukça cazip bir görüş olarak kabul edilmektedir.

Güneş enerjisinden elektrik enerjisi elde edilmesi amacı ile geliştirilmiş yapılara "fotovoltaik hücreler" veya "güneş pilleri" adı verilir. Fotovoltaik hücrelerin tarihi, 150 yıl öncesine, Becquerel’in, bir elektrolit özelliği içerisindeki elektrod üzerine ışığın düşmesi durumunda bir fotogerilim olduğuunu gözlediği 1839 yılına kadar dayanmaktadır. 1873 yılında, Seleryumun fotoilet-
kenlik özelliğini gösterdiğiğin Smith tarafından ortaya çıkarılmasıın ardından, 1877 yılında, Adams ve Day, bir katı olan Selinyumda da benzer bir fotovoltaik etki gözlemişlerdir.

Bu çalışma, güneş enerjisinden elektrik enerjisi elde etmek amacıyla geliştirilmiş yapılarından olan ve bir çok özelliğinden dolayı üzerinde hala yoğun çalışmalar yapılan Cu₂S/CdS yapılar ile ilgilidir. Bu hücrelerin çeşitli karakteristik özelliklerini teorik olarak incelendi ve hazırlanma yöntemleri hakkında genel bilgiler verilmektedir.

İnce film yapılar, genellikle 5-50 µm arası kalınlıklardır, birçoq değişim yöntembeler hazırlanabilmekte, önceden belirlenen herhangi bir şekli veya yapıda (geometride), geniş bölgeler halinde şekelledilbilmektedir. Hazırlanan ince film mikroyapısı, filmin etkin yüzey alanını oldukça etkiler. Örneğin, film gençekli veya sütunlu (columnar) bir yapıda ise, etkin film alanı, film kalınlığı ile artış gösterecektir. Tanecik büyükliğünün fazla olduğu yapılar ve düzgün (planar) tabakalar için ise, filmin etkin alanı geometrik alana yaklaşıklar olarak eşittir.

lemdir. x değeri, ideal yapılarda 2.00 değerinde olmakla beraber, hemen hemen tüm hücrelerde bu değerden sapmalar gösterir.

CdS yapı, ince film formunda en geniş şekilde kullanılan yarıiletken malzemelerden birisidir. Bu yapıya, Cu, Ag ve Au kontaklar yapılarak gözlenen ilk fotovoltaik etki, Reynolds ve arkadaşlarına (1954) aittir. Bu bilim adamları, güneş ışığı altında, Voc = 0.54 V, Isc = 15 mA/cm² çok kiş parametreleri kaydettiler. Ince film güneş pili yapıları olarak nitelendirilebilecek ilk çalışma ise, Nadjakov ve arkadaşları (1954) tarafından Au ve Al kontaklar kullanılarak gerçekleştirilmiştir.

1966'nın sonlarına doğru, Duc Coung ve Blair (1966), esas önemli tepkinin, CdS malzemesi içerisindeki Cu safesizlik durumlarının uyarılmasından kaynaklandığını ileri sürümleridir.

Daha önce de belirtildiği gibi bu çalışma, Cu₅S/CdS ince film güneş pilleri ve hazırlama yöntemleri üzerinde teorik bir inceleme niteliğindedir. İkinci bölümde, güneş enerjisi üzerinde genel bilgiler verilmiş, atmosfer dışında ve özellikle dünya yüzeyindeki güneş ışınlarının niteliği ile spektral dağılımı incelenmiş, bu güneş ışınlarından elektrik enerjisi elde edilmesi amacıyla geliştirilen fotovoltaik sistemlerin yararlandığı fotovoltaik dönüşüm olayına kısa bir giriş yapılmıştır.

Üçüncü bölüm, güneş pillerinin hazırlanması amacıla geliştirilen yöntemlerin tanıtıılması ve bazı karakteristik özelliklerinin açıklanmasını amaçlamaktadır. Elbette, bu yöntemlere ek birçok yöntem daha söz konusudur.
Ancak, en geniş şekilde kullanılan, kaliteli film hazırlanmasında en yararlı olan, özellikle ince film Cu$_x$/CdS yapılarının üretilmesi için uygun yöntemler ele alınmıştır.

Dördüncü bölümde, Cu$_x$/CdS ince film çok-kristalli güneş pilleri incelenmiştir. Bunun için, heteroeklem Cu$_x$/CdS yapıyı oluşturan Cu$_x$ ve CdS malzemeleri ayrı ayrı ele alınarak, bu malzemelerin çeşitli özellikleri ve spektral tepkileri bağımsız şekilde gözden geçirilmiş, daha sonra da, bu malzemelerin oluşturduğu heteroeklem yapı genel özellikleri ile tanıtılmış, bu yapı üzerinde işmanın, sıcaklığın ve hazırlama yöntemlerinin etkileri araştırılmış, yapıdaki bir takım bozulma mekanizmalarına kısaca de่นılmış ve son olarak ta, bu hücrelerin eksiklik ve üstünlükleri hakkında bir değerlendirme yapılmıştır.

Beşinci ve son bölüm ise, ince film yapılar (ve genel olarak güneş pilleri) için verim hesaplanması ile ilgilidir. İlk olarak, güneş işmanının ölemüğü ve verim hesaplanması ile ilgili olarak ortaya atılan standart bir yöntem hakkında bilgi verilmiş, daha sonra da, çalışmanın gerçekleştirildiği Konya Bölgesi için, bu tıp yapılarla hücrenin çıkış parametrelerinin işına şiddetine bağlı olarak değişimi araştırılmış ve grafik ve ampirik bağlantılar yardımcı ile yerel işına şiddeti için genel bir Cu$_x$/CdS hücrenin verimi hesaplanmıştır.
II. GÜNEŞ İSIMASI VE FOTOVOLTAİK DÖNÜŞÜN

2.1. GİRİŞ

Güneş, galaksi merkezinden yaklaşık 27000 ışık yılı uzaklıkta ve galaksi düzlemine 100 ışık yılı mesafe içerisinde bulunan bir yıldızdır. Oldukça yoğun olup çok sıcak gazlardan meydana gelmiştir. Çapı yaklaşık 1.39196x10^6 km dir. Kendi etrafında dönen nú yaklaşı̇k 4 haftada tamamlar. Kütlesi 1.989x10^30 kg, hacmi 1.4121x10^27 m^3 tür. Bíleği, % 75 H₂, % 24.25 He ve % 0.75 ağır elementlerden-dir. Dünya ile güneş arasındaki ortalama uzaklık 1.4959x10^8 km kadardır.

Güneş, dünyamızda ve sistem içerisinde yer alan diğer gezegenlere enerji sağlayan tek kaynaktır. Canlı organizmaların yaşamlarını ona borçludurlar. Kömür, petrol, su potansiyeli, rüzgar v.b., güneş ısıınının maddeler üzerindeki fiziksel ve kimyasal etkilerinden oluşmaktadır. Termo-nükleer bir reaktör olan güneşin birim alanından birim zamanda, çeşitli dalgaboylarında 62 MW/m² lik enerji yayılmakta ve güneşin bütün yüzeyinden yayılan enerjinin sadece iki milyarda biri yeryüzüne ulaşmaktadır. Buna rağmen, bir yıl boyunca gelen ısıma enerjisi, dünya enerji tüketiminin milyonlarca katıdır. Güneşin yaydığı ısıınım, dünya-
nin yüzey sıcaklığını belirlediği gibi, hem yüzey hem de atmosferdeki doğal olaylar için gerekli enerjiyi sağlamaktadır. İşıma, 6000 K sıcaklıklıkta bir siyah cismi ısımasına oldukça benzer bir spektral dağılım göstermektedir. Şek.2.1 de, güneş ışıma spektrumu ile değişik sıcaklıklarda siyah cismi ısıma spektrumları karşılaştırılmaktadır.

Şekil 2.1 Farklı sıcaklıklardaki siyah cismi ısımaları ile güneş ısımasının spektral dağılımları.
Güneşin dünya atmosferi dışında, boş uzaydaki ışınmanın spektral dağılımı ise Şek. 2.2 de görülmektedir.

![Spektral şiddet](image)

Şekil 2.2 Dünya atmosferi dışında güneş ışınım spektrumu.

Dış uzayda, güneşin yaydığı enerjinin %98 i 0.25-0.30 μm arasındaki dalgaboylarda yer alır. Güneşin merkezindeki sıcaklığının 20 Milyon K olduğu tahmin edilmekle birlikte, güneşin karakteristik elektromagnetik yayılımını belirleyen bu sıcaklık değildir. Güneşin iç tabakalarından yayılan şiddetli ışınının çoğu, güneş yüzeyi yakınındaki negatif bir hidrojen ıyon tabakası tarafından soğurulur. İstanbul tabakada soğurulması, optik engel yardımcıyla aşırı enerjiyi aktaran konveksiyon akımları ortaya çıkarmaktadır. Bu enerji daha sonra, yukarıdaki bağış olarak geçiren gazların içerisinde yeniden yayılır. Bu gazların oluşturduğu kısm fotosfer olarak adlandırılır ve bu sıcaklıklıkta bir siyah cismin yayması beklenen elektromagne-
tik spektrumun oldukça benzeri bir ışıma spektrumu yayar.

2.2. GÜNEŞ SABİTİ

Dünya atmosferi dışında, güneş ile dünya arasındaki uzaklığın ortasında, güneşin yayılma yönüne dik birim alana düşen ışıma şiddeti "Güneş Sabiti" olarak adlandırılır ve 1.353 kW/m² olarak kabul edilir. Bu güneş sabiti aynı zamanda, "Sıfır Hava Kütle Işıması(Air Mass Zero)-AMO" olarak ta bilinir. Dünya-güneş arası uzaklığın yıl boyu değişmesinden dolayı bu sabit, ±%3.35 lik değişim gösterir ve 3 Ocak'ta minimum 1.40 kW/m² ile 6 Temmuz - da minimum 1.31 kW/m² arasında değerler alır.

2.3. DÜNYA ATMOSFERİNİN ETKİSİ

gelen güneş ışınlarının (yani güneş doğrultusunun) yatay düzlem normali ile yaptığı açı olarak tanımlanır.

Şekil 2.3 Uzaydaki güneş ışını (AMO), yeryüzüne dik olarak gelen ışın (AM1) ve normal ile z açısı yaparak gelen ışın (AMSecz) için diagram.

İdeal (güneşli) bir öğle saatinde z zenith açısı, 23.5°Cos(360N/365) ile verilir. Buradaki N, derece olarak 21 Haziran gündönümünden itibaren olan gün sayısıdır. Bu durumda güneş tepeden 60° lik açı ile geliyorsa, optik hava kültüle AM2 dir. Bu AM2 ışması dünya yüzeyindeki ortalama güneş ışınmasına karşılık gelmektedir.

Şekil 2.4 te, AMO ve AM2 güneş spektrumları karşılaştırılmıştır. AM2 spektrumunda, değişik atmosferik etkileşin neden olduğu sağlama bandları da gösterilmiştir.

Atmosfer içerisinde yol alan güneş ışınlarının ugradiği mekanizmalar şu şekilde özetlenebilir:

1) Gökyüzünün mavi renginden sorumlu Rayleigh saçılma,
2) Özellikle oksijen, azot ve ozonda elektronik sağlama bandları. Ozon tarafından $\lambda < 0.29 \ \mu m$ dalgaboylu ışınının tümü sağrulur.
3) H_2O ve CO_2 de moleküler titreşim ve dönme sağrul
bandları. \(\text{H}_2\text{O} \) ve \(\text{CO}_2 \) tarafından \(\lambda > 3 \mu \text{m} \) dalgaboylu ışının yaklaşık tümü soğurulur.

4) Aerosoller ve parçacık maddeleri tarafından saçılma. Bu saçılma, kısa dalgaboylara için önemlidir.

5) Kirılma indisinde, sıcaklık ve basınçla oluşan değişimlerden dolayı kirılma ve turbulans.

Şekil 2.4 AMO ve AM2 güneş spektrumlarının karşılaştırılması. AM2 spektrumunda değişik atmosferik soğurma bandlarının etkileri de gösterilmiştir.

Bir gün boyunca, güneşin zenith açısı ve dolayısıyla hava kütesi sürekli değiştiğiinden, dünya üzerine şiddet ve spektral dağılımı sürekli değişen bir ışın ulaşmakta-
dır. İdeal koşullarda, z = 0 durumunda, gerçek hava kütesi 1 e yaklaştır ve diğer normal gün saatlerinde ise, AM2 ve
AM1.5, ortalamada hava kütesi için yaklaşık bir değer ola-
rak kullanılabilir. Şek.2.5de, standart AM1.5 güneş spek-
trumu görülmektedir. Bu spektrum, teorik güneş pili verim
hesaplamalarında oldukça yararlıdır. Şekilde aerosol saç-
ma parametreleri, H₂O ve Ozonun soğurma bandıları da göz
onune alınmıştır. Her saat doğrudan güneş ışımasının öl-
çülmesi, güneş enerjisi üreten fotovoltaik sistemlerin
bilgisayar yardımı ile incelenmesi için yararlı bir yöntem olmakla birlikte, ne yazık ki bu ölçümler genellikle
spektral değişimlerin tümünü içermezler. Bu nedenle, labo-
ratuardaki ölçümlerde, gerekli sabit şiddeti ve uygun(is-
nenen) güneş ışın spektrumunu sağlayacak birtakım değişik
aygıtlar ve ölçme araçları geliştirilmiş bulunmaktadır.
Şekil 2.5 Standart AML.5 güneş spektrumu.

2.4. FOTOVOLTAİK DÜNÜŞMÜN ROLÜ

Dünyamız sürekli gelişmekte ve kalabalıklaşmaktadır. Gelişen dünyanın en enerji gereksinimlerinin de bu gelişmeye bağlı olarak artacağı açık bir gerçektir. Günümüz dünyasında enerji, yaşamın vazgeçilmez bir unsuru olmuştur. Onun yokluğu veya eksikliği durumunda, tüm yaşamın nasıl felce uğrayabileceği kesinmekte zor değildir. Temel enerji gereksinimlerimizin karşılanmasını üstlenen kaynakların birçoğu, örneğin kömür ve petrol rezervleri, oldukça sınırlı olup bir kaç yüzyl sonra tükenme durumuna geleceklerini tahmin edilmektedir. Daha uzun ömürlü diğer enerji kaynakları ise, ya çeşitli etkenlerden dolayı (verimlerinin düşük oluşu ve maliyetlerinin yüksekliği, çevre kirlenmesine neden olmaları, bazı tehlikelere sahip olmaları gibi) geniş potansiyel amaçlar için yararlı şekilde kullanılamamakta ya da, genel enerji gereksinimlerini karşılamaktan
oldukça uzak görülmektedir. Artan enerji gereksinimlerini karşılamak ve gelecekte, tükenmekte olan enerji kaynaklarının yerini alabilecek bir takım yeni ve cazip kaynaklar ortaya çıkarmak amacıyla, tüm dünyada yoğun araştırmalar yapılmaktadır. Bunların içerisinde güneş enerjisinden yararlanılması ve özellikle bu enerjinin diğer enerji çeşitlerinden elektrik enerjisine cazip verimlerle dönüştürlmesi fikri, birçok açıdan ilgi çekici ve gelecek vadeden bir çalışma konusudur.

Bir fotovoltaik dönüştürücünün enerji gereksinimlerinin karşılanmasında yararlı şekilde kullanılabilmesi için üç konudaki engeli aşması gerekmektedir: a) Maliyet, b) Verim ve c) Çalışma ömrü. Bu faktörler gerçekte bağımsız olmayıp karşılıklı ilişki içerisindedirler.

Geniş uygulama alanı bulan ilk fotovoltaik hücreler, uzaysal çalışmalarında kullanılan tek-kristal Si homoe有何 hücreleridir. 1956 da bu hücrelerin maliyeti, pik Watt başına 350 dolar idi (Bir pik watt, ideal bir gün boyunca, hücreden elde edilebilecek maksimum güçtür.). Gelişen teknolojik gelişmeler ile bu maliyet, 1966 yılında 100 dolara düştü(Wolf,1972). 1977 lerde dizi düzeneğer için maliyet, pik watt başına 15 doların alta kadar düşürüldü. 1990 lı yıllarda bu maliyetin 0.15-0.50 dolarla düşürülmesi amaçlanmaktadır.

Yerel uygulamalarda kullanan fotovoltaik hücreler, ya geniş-alanlı ince film hücreler ya da tek-kristal hücrelerin kullanıldığı yoğunlaştırıcı sistemler olarak iki şekilde olabilir. İnce film durumunda, küçük miktarda malzeme kullanılması ve ucuz işleme yöntemleri ile maliyet düşürürlür. Yoğunlaştırıcı sistemler ise, tek-kristal güneş pilinin yüksek maliyeti, yoğunlaştırıcı sistemin toplam maliyette göremeektir.

Bir fotovoltaik hücrenin verimli olabilmesi için, hem yapım maliyetlerini hem de üretimde kullanılan enerji maliyetlerini karşılayacak şekilde uzun bir çalışma ömrüne sahip olması gerekir. Kabul edilen minimum çalışma süresi 20 yılıdır. 1977 yılındaki üretim yöntemlerinin kullanılma-
si durumunda, bir tek-kristal Si hücresinin, üretimi için gerekli enerjinin maliyetini 3.8-6.4 yılda karşılatabi-
ceği tahmin edilmektedir (Lindmayer, 1977). Yerel (dunya üzerindeki) uygulamalarda çalışma ömrünü sınırlayan et-
kenler, uzaysal çalışmalarından oldukça farklıdır. Uzaysal çalışmalarla, yüksek enerjili parçacık akıları kristal
örgüü bozarak çalışma ömrünü kısıtlanırken yerel uygula-
malarda difüzon ve aşınma mekanizmaları daha baskındır.

Yaygın fotovoltaik sistemler, başlica güç kaynakları
olarak kullanılmaktadır. Artan üretim ve buna bağlı azalan
maliyet ile, ıssız bölgelerdeki konutlarda, zıralı su pom-
palama işlemlerinde ve birçok yerleşim bölgesinde değişik
amaçlar için uygulama alanı bulabilir. Şüphesiz bu konu-
daki çalışmalar sona ermemiş, yoğun şekilde, dünyanın de-
gişik yerlerinde devam etmektedir. Çiz.2.1 de günümüz
enerji kaynakları kısaca özetlenerek karşılaştırmaya yapıl-
maktadır. Çizelgede belirtilen enerji kaynakları, mevcut
kaynakların tümünü içermemektedir. Bu enerji kaynakların-
dan başka, bir takım değişik, oldukça özel koşullarda ya-
rarlanılabilen ve geniş amaçlı kullanımlar için uygun ol-
mayan kaynaklar da bulunabilir. Ancak bu tip kaynaklar,
mevcut ve gelecekteki enerji gereksinimlerinin karşılan-
masında önemli bir rol oynamadığında ve toplam enerji
üretimine kaydadeğer hiçbir katkı yapmadıklarından dolu-
ya göz önüne alınmasıdır. Bu çizelgede, günümüzde yarar-
lanılan ve bir kısmından gelecekte de yararlanılabilecek
enerji kaynakları, çeşitli üstünlük ve eksiklikleri ile
ele alınmaka, dolaysıyla farklı enerji kaynakları ara-
sında bir karşılaştırma yapma olanağı sağlanmaktadır.

Dünyada tüketilen enerjinin yaklaşık %90 ina yakını
fosil kaynaklardan sağlanmaktadır. Fosil kaynaklar içe-
risinde en çok kullanılanı petroldür. Yapılan tahminlere
göre fosil yakıtlar, bugünkü oranda kullanılmaya devam
edilirse, çok yakının bir gelecekte tükenmeye başlayacaktır.
Nükleer enerjinin üretilen toplam enerjiye olan kat-
kısı ise son yıllarda artmağa başlamıştır.
<table>
<thead>
<tr>
<th>ENERJİ KAYNAĞI</th>
<th>ELDE EDİLİŞ YÖNTEMİ</th>
<th>ÖNEMLİ ÜSTÜNÜKLERİ</th>
<th>EKSTİKLİKLERİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETROL</td>
<td>Sondaj</td>
<td>Güvenilirlik, Düşük Kirleme Oluşturma</td>
<td>Sınırlı Kaynak (20 yıllık rezerv), Yenilenebilir</td>
</tr>
<tr>
<td>DOĞAL GAZ</td>
<td>Sondaj</td>
<td>Güvenilirlik, Düşük Kirleme Oluşturma</td>
<td>Çok Sınırlı Kaynak (5-10 yıllık), Yenilenebilir</td>
</tr>
<tr>
<td>KAMUR</td>
<td>Derin veya Yüzey Madenciliği</td>
<td>Kullanında Kolaylık, Bir Hidrokarbon kaynağı olma</td>
<td>Atmosferik Kirlemeye Yol Ağı, Yenilenebilir</td>
</tr>
<tr>
<td>NGKLEER FİZYON</td>
<td>Hafif Su Reaktörleri</td>
<td>Teknolojide üstünlük ve Dayanıklılık</td>
<td>Sınırlı Yakıt Kaynağı, İşsiz kirleme oluşturma, Çağdaş ve aktif tehlikele- ri, Artık Oluşturulmaz</td>
</tr>
<tr>
<td>NGKLEER FÖZYON</td>
<td>Magnetik Olarak Başlanılan Lazer Olayı</td>
<td>Sınırsız Yakıt Kaynağına Sahip Olma</td>
<td>Malzeme ve Radyasyon Sızıntı Sorunları</td>
</tr>
<tr>
<td>GÜNES İSISİ</td>
<td>Güneş İğninin Soğұ- rulmasıyla Doğrudan Işın Alayı</td>
<td>Kirlenme Oluşturulan Sınırsız Enerji Kaynağına Sahip Olma</td>
<td>Yapısal Sorunlar ve Depolama, Kapsamlı Düşük Sorunlar</td>
</tr>
<tr>
<td>FOTOVOLTAİK ÖNÜSÖM</td>
<td>Y.1, Eklem Aygıtlarında Fotovoltaik Etkiler</td>
<td>Kirlenme Oluşturulan Sınırsız Enerji Kaynağına Sahip Olma</td>
<td>Birlarının Yüksek Maliyetli Olgu, Enerji Depolama ve Bozulma Sorunları</td>
</tr>
<tr>
<td>RÖZGEAR ENERJİSı</td>
<td>Elektrik Üretiminde Rözgar Kuvvetinin Kullanılması</td>
<td>Kirlenme Oluşturulan ve Yenilenebilirlik</td>
<td>Belirli Bölgede Sınırlı Olma ve Enerji Depolama Günlükleri</td>
</tr>
<tr>
<td>HİDROELEKTRİK ENERJİ</td>
<td>Suyun Yerleşimleri ile Aktasının Elektrik Üretiminde Kullanılması</td>
<td>Yanilenebilirlik ve Ucuz Olma</td>
<td>Özeldiği özel Bölgelere Sınırlı Olma</td>
</tr>
<tr>
<td>OKYANUS ENERJİSİ</td>
<td>Okyanustaki Isı Değişiminin Isı MotorununULATOR hırtalanması ve Kullanılabilir</td>
<td>Kirlenme Oluşturmada ve Yenilenebilirlik</td>
<td>Enerji Aktarımının Paşalı Olgu ve Malzeme Paslanma Sorunları</td>
</tr>
<tr>
<td>JİDTERMAL ENERJİ</td>
<td>Yerküre İçerisindeki Isı, Enerjisinin Kullanılması</td>
<td>Ucuz Bir Enerji Kaynağı Olma</td>
<td>Belirli Bölgelere Sınırlı Olma ve Korozyon Sorunları</td>
</tr>
<tr>
<td>GEL-GIT ENERJİSİ</td>
<td>Ayn Etkisi ile Suyun Hareketinden Elektrik Enerjisi Üretimi</td>
<td>Kirlenme Oluşturulmada ve Yenilenebilirlik</td>
<td>Sınırlı Sıyasal Bölgede Kullanılabilir Olma</td>
</tr>
</tbody>
</table>
2.5. GÜNEŞ PILİ

Temel olarak fotovoltaik dönüşüm üç ayrı mekanizada sonucu meydana gelir:
1) Işığın bir yarı iletilen malzeme içerisinde sağlararak malzemede elektron-delik çiftlerin oluşması,
2) Oluşan bu yüklerin, yarı iletilen içerisinde bir iç elektrik alanı yardımıyla ayrıılması ve toplanması,
3) Sonuçta, bu toplanan yüklerin kullanılmak üzere bir dış yük aktarılması.

Bu mekanizmalar sayesinde yarı iletilen malzeme, üz erine düşen ışığı kullanabilir elektrik enerjisine dönüşturmüş olur. Işığın bu şekilde elektrik enerjisine dönüştürülmesini gerçekleştirmek amacıyla geliştirilmiş aygıtlarla ise "güneş pili" adı verilir. Şek.2.6 da, bir güneş pili yapısının şematik gösterimi verilmiştir.

Şekil 2.6 Bir güneş pili hücresinin genelleştirilmiş şematik gösterimi.

Güneş pilinin çeşitli karakteristik özelliklerini daha iyi anlamak için güneş pili hücresinin eşdeğer akım devresi göz önüne alınabilir. Şek.2.7 de, bir güneş pili hücresinin idealleştirilmiş eşdeğer devresi görülmektedir.

Şekil 2.7 Bir güneş pili hücresinin idealleştirilmiş elektriksel eşdeğer devresi.
Burada I_L gelen ışığın neden olduğu sabit akım ve I_s doyma akımdır. Böyle bir aytın karakteristik akım denklemi şu şekilde verilir:

$$I = I_s(e^{qV/kT} - 1) - I_L$$

Burdaki doyma akımı, I_s ise:

$$I_s = qn_i^2 \left[\frac{1}{N_a} (D_n/n_n)^{1/2} + \frac{1}{N_d} (D_p/n_p)^{1/2} \right]$$

şeklindeidir. q elektron yükü, n_i saf (intrinsic) yarıilet-kende taşıyıcı yoğunluğu, N_a akseptör, N_d ise donor yoğunlukları, n_n ve n_p ise sırasıyla elektron ve deşik için ömür (lifetime) parametreleridir.

Eğer $I_L = 0.1$ amp, $I_s = 10^{-9}$ amp ve $T=300$ K için Si güneş pili gözönüne alınarak $I-V$ grafiği çizilirse, Şek.2.8 dekine benzer bir eğri elde edilir.

Şekil 2.8 Aydınlatılma durumundaki bir güneş pili hücresinin akım-gerilim karakteristik eğrisi.

Bu durumu güneş pilinin verimi en genel şekilde ile:

\[\eta_s = \frac{\text{Maksimum Güç Çıkışı}}{\text{Güç Girişği}} = \frac{I_{mp}V_{mp}}{P_{in}} \]

\[P_{in} \text{ atmosfer dışında birim alana düşen güneş enerjisiettaidir. } V_{mp}I_{mp} \text{ çarpımı, hücreden elde edilebilecek maksimum güç olup } P_{m} \text{ ile gösterilir. } \]

\[ff = \frac{I_{mp}V_{mp}}{I_{SC}V_{OC}} = \frac{P_{m}}{I_{SC}V_{OC}} \]

Maksimum güç çıkışıının I_{SC}V_{OC} çarpımına oranı olarak tanımlanan bu faktör, değişik güneş pilleri için 0.6-0.8 arası olabilir ve birimsizdir. Bu durumda güneş pilinin verimi, P_{s} pil üzerine düşen güneş enerjisi şiddeti olmak üzere:

\[\eta_s = \frac{ffI_{SC}V_{OC}}{P_{s}} = \frac{P_{m}}{P_{s}} \]
III. İNCE FILM HAZIRLAMA YÖNTEMLERİ

3.1. GİRİŞ

İnce film güneş pili yapıların hazırlanması amacıyla geliştirilmiş birçok yöntem vardır. Bunların bir kısmı, vakumda, atomik veya moleküler gökeltme işlemleri, diğer bir kısmı ise, atmosfer basınçının yakınındaki taşıyıcı bir gaz veya sıvıdan gökeltme işlemleridir.

Oluşturulan ince filmin mikroyapısı ve dolayısıyla fiziksel özellikleri üzerinde gökeltme yöntemlerinin etkisi büyüktür. Bu yöntemler Yardımı ile, angströmden mm mertebesine kadar değişen kalınlıklarda ince film yapılar oluşturulabilmektedir.

Genel olarak büyüme işlemi üç basamakta gerçekleştirilir:

a) Atomik, moleküler veya iyonik numunelerin oluşturulması,

b) Bu numunelerin bir ortamdan geçirilmesi,

c) Bir altabaka üzerine bu numunelerin toplanması. Gökeltilecek numunelerin elde edilir yöntemlerine bağlı olarak gökeltme metodlarını sıralandırılmak mümkündür. Çiz. 3.1 de, çeşitli ince film gökeltme yöntemleri ve bazı temel özellikleri verilmiştir.
ÇIZELGE 3.1
İNCE FILM ÇÖKELTÝMEDÝH ORTAK NOKTALAR

<table>
<thead>
<tr>
<th>İşim</th>
<th>Şimdî</th>
<th>Çökeltme Hızı</th>
<th>Ortam Basıncı, Torr</th>
<th>Özellikler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vakum Buharlaştırma</td>
<td>VE</td>
<td>ORTA</td>
<td>$10^{-8} - 10^{-5}$</td>
<td>Pahalı donanma sahip olma, Az eätzeye kullanılır</td>
</tr>
<tr>
<td>Moleküler Demet Epitaxy</td>
<td>MBE</td>
<td>DÖŞOKK</td>
<td>$10^{-11} - 10^{-8}$</td>
<td>Çok Pahalı Donanma; Mükemmeli bir Saf-sızık ve Stokiyometri Kontrolü</td>
</tr>
<tr>
<td>Fılağ Vakum Buharlaştırma</td>
<td>FVE</td>
<td>YOKSEK</td>
<td>$10^{-8} - 10^{-5}$</td>
<td>Farklı şekillerde Buharlaşan bileşikler için Stokiyometri Kontrolü</td>
</tr>
<tr>
<td>Reaktif Vakum Buharlaşdırma</td>
<td>RVE</td>
<td>ORTA</td>
<td>$10^{-6} - 10^{-2}$</td>
<td>İyi bir Stokiyometri Kontrolü</td>
</tr>
<tr>
<td>Aktifiştırılmış Reaktif Vakum Buharlaşdırma</td>
<td>ARVE</td>
<td>YOKSEK</td>
<td>$10^{-6} - 10^{-2}$</td>
<td>Birçok Güç Reaksiyonda Başarılı Se-kilde Kullanılabilir</td>
</tr>
<tr>
<td>Iyon Demet Çökeltme</td>
<td>IB</td>
<td>ORTA</td>
<td>10^{-6}</td>
<td>Iyon Enerjisi ve iyon yoğunluğunun Değiştirilbilmesi</td>
</tr>
<tr>
<td>Sicak Duvar Buharlaşdırma</td>
<td>HUVÉ</td>
<td>Ortadan DÖŞOKK</td>
<td>$10^{-8} - 10^{-5}$</td>
<td>Termodinamik Dengeye Yakın işlem ve yeto Malzeme Kullanımı</td>
</tr>
<tr>
<td>Sputtering Teknikleri</td>
<td>Sp</td>
<td>DÖŞOKK</td>
<td>$10^{-3} - 10^{-1}$</td>
<td>Çökeltinan Atom ve Molekülerin Yük-sek Enerjilerde Değişikiler</td>
</tr>
<tr>
<td>Magnetron Sputtering</td>
<td>MSp</td>
<td>ORTA</td>
<td>$10^{-3} - 10^{-1}$</td>
<td>Alttabakadan Uzakta Sınırlı Tutulan Bir Plazma Kullanımı</td>
</tr>
<tr>
<td>Triyod Sputtering</td>
<td>TSp</td>
<td>ORTA</td>
<td>$10^{-5} - 10^{-3}$</td>
<td>Alttabakada Düşük Basıncı</td>
</tr>
<tr>
<td>Reaktif Sputtering</td>
<td>RSp</td>
<td>DÖŞOKK</td>
<td>$10^{-3} - 10^{-1}$</td>
<td>Stokiyometri Kontrolümünden Kolaylığı</td>
</tr>
<tr>
<td>Iyon Demet Sputtering</td>
<td>IBSp</td>
<td>ORTA</td>
<td>10^{-5}</td>
<td>Düşük Basıncı ve Ek Bir Kontrol Özellikliği Gösterir</td>
</tr>
<tr>
<td>Plazma Kiyasal Buhar Çökeltme</td>
<td>PCOS</td>
<td>ORTA</td>
<td>10^{-3}</td>
<td>Birçok Reaksiyonun Oluşturulabilmesi</td>
</tr>
<tr>
<td>İsim</td>
<td>Şimge</td>
<td>Kaynak Sıcaklığı, °C</td>
<td>Alttabaka Sıcaklığı, °C</td>
<td>Çökeltme Hızı</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Kimyasal Buhar Çökeltme</td>
<td>CVD</td>
<td>≥850</td>
<td>≥700</td>
<td>Ortadan Yüksek</td>
</tr>
<tr>
<td>Metal-Organik Kimyasal Çök.</td>
<td>MO-CVD</td>
<td>≥25</td>
<td>550-750</td>
<td>Ortalama</td>
</tr>
<tr>
<td>Yakın Aralıklı Buhar Aktarımı</td>
<td>CSVT</td>
<td>≥750</td>
<td>≥400</td>
<td>Yüksek</td>
</tr>
<tr>
<td>Sıvı-Faz Epitaxy</td>
<td>LPE</td>
<td>800</td>
<td>800</td>
<td>Ortalama</td>
</tr>
<tr>
<td>Spray Pyrolysis</td>
<td>SP</td>
<td>25</td>
<td>450</td>
<td>Düşük</td>
</tr>
<tr>
<td>Kimyasal Kaplanma (Chemiplating)</td>
<td>CP</td>
<td>25-90</td>
<td>25-90</td>
<td>Düşük</td>
</tr>
<tr>
<td>Elektroplana (Electroplating)</td>
<td>EP</td>
<td>25-90</td>
<td>25-90</td>
<td>Düşük</td>
</tr>
<tr>
<td>Iyon Değişimi (Ion Exchange)</td>
<td>IEX</td>
<td>45-100</td>
<td>45-100</td>
<td>Ortalama</td>
</tr>
<tr>
<td>Anodizasyon</td>
<td>AN</td>
<td>25</td>
<td>25</td>
<td>Düşük</td>
</tr>
</tbody>
</table>
Çizelge 3.1 in devamı

<table>
<thead>
<tr>
<th>İsmi</th>
<th>Simgesi</th>
<th>İşlem Sıcaklığı, °C</th>
<th>Minimum Kalınlık, µm</th>
<th>Özellikler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray Airbrush</td>
<td>SPR</td>
<td>25-400</td>
<td>5</td>
<td>Çok Pahalı Bir Düzenek</td>
</tr>
<tr>
<td>Brush Painting</td>
<td>BP</td>
<td>25</td>
<td>20-40</td>
<td>Ucuz Fakat Kurulması Sağ Düzenek</td>
</tr>
<tr>
<td>Screen Printing (Seriografi)</td>
<td>SER</td>
<td>25</td>
<td>20</td>
<td>Ucuz, Kurulması ve Kullanımı Kolay Düzenek; Altabaka Alanı Belirli</td>
</tr>
<tr>
<td>Doctor Blade</td>
<td>DB</td>
<td>25</td>
<td>10</td>
<td>Ucuz ve Kurulması Kolay Düzenek</td>
</tr>
<tr>
<td>Sedimentasyon</td>
<td>SED</td>
<td>25</td>
<td>5</td>
<td>İşleminOLDUKÇA Ucuz Olması</td>
</tr>
<tr>
<td>Plazma Spray</td>
<td>PS</td>
<td>25-800</td>
<td>5</td>
<td>Yansıtıcı Kaplamalarda Kullanım</td>
</tr>
<tr>
<td>Elektroforesis</td>
<td>EL</td>
<td>25</td>
<td>5</td>
<td>Fosfor Yapılarının Hazırlanmasında Geniş Şekilde Kullanılır</td>
</tr>
</tbody>
</table>

31 µm/dk, lik hizlar Yüksek,
40,1 µm/dk, lik hizlar Düşük olarak ele alınmaktadır.
3.2. VAKUM BUAHARLASTIRMA YONTEMİ

Vakum buharlaştırma sistemi, şematik olarak Şekil 3.1 de gösterilmiştir.

Şekil 3.1 Bir Knudsen hücre kaynağının kullanıldığı Vakum buharlaştırma düzeneğinin şematik gösterimi. 0.2 µm lik bir hızda CdS buharlaştırılması için gerekli tipik parametreler: 820°C lik yanak ve 200-400°C çevrində alttabaka sıcaklıklarıdır. Alttabakaya olan CdS akısı yaklaşık 3,8x10^{15} atom/cm^{2}sn dir.
Bir malzemenin buharlaşabilmesi için, o malzemenin
gerekti buhar basıncını oluşturacak yeterliktaki yüksek
sıcaklıklara kadar ısıtılması gerekir. Vakum buharlaştır-
ma yönteminde değişik buharlaştırma kaynakları kullanılır.
Çökeltilecek numuneler bu kaynaklarda buharlaştırılarak
alttabaka üzerine gönderilir. Vakum içerisinde, birim a-
landan atomların serbest buharlaşma hızı, Langmuir-Dushman
kinetik denklemi ile verilir:

\[N_e = 3.513 \times 10^{22} \frac{P_e}{(MT)^{1/2}} \text{ (molekül/cm}^2\text{sn)} \]

Burada \(P_e \), \(T \) sıcaklığında buharlaşacak malzemenin torr
cinsinden buhar basıncı, \(M \) ise, buharlaşacak malzemenin
molekül ağırlığıdır.

Buharlaştırılarak numuneler, çok atomlu gruplar ha-
linde buharlaşan S, Se, Te, Bi, P, Sb ve As dışında, genel-
likle, bir katı veya sıvı fazdan nötral atomlar halinde
buharlaştırır. Alalım veya bileşiklerin buharlaştırılması
çoğunlukla ayırışma ile sağlanır. Eğer bileşigi oluşturan
elementler eşit buhar basınçlarına sahip iseler, "congruent-
uyumlu" buharlaşma oluşur. Buharlaşan atomların vakum içe-
risinde artık gaz atomları ile çarpışması ve film yapışın-
da bir gaz korunmasına yol açması da mümkündür. Bu neden-
le, vakum koşullarının olabildiğince yüksek olması gerek-
mektedir. Genellikle \(10^{-6} \) Torr'lık bir vakum basıncı, bir-
çoğ ince film yaplarının kusursuz yakını biçimde çözelti-
bilmesi için yeterli olmaktadır.

CdS ün buharlaşması durumunda, bileşik Cd ve S halin-
de ayırışır. Kaynaktan olan Cd ve S\(_2\) aksı, hücre içeri-
sindeki P(T) basınçlı ile tayin edilir. Bu basınç ise,
hücre sıcaklığının önemli bir fonksiyonudur. Tipik bir
Knudsen hücrei içerişinde, buharlaşma sırasında, \(10^{-1} \)
Torrluk bir basınç vardır. Cd ve S\(_2\) aksı içindeki parça-
ciklar, 0,1-0,2 eV luk ek bir ısısal enerjiye sahiptir.

CdS ün bu şekilde çözeltimesinde, alttabaka sıcak-
lığı yaklaşık 200-400°C dir. Cd ve S\(_2\) nin CdS üzerinde-
ki buhar basıncı, Cd veya S\(_2\) in birbiri üzerindeki ba-
sıncından çok daha(bir kaç mertebe) büyütür. Bu nedenle
herhangi bir Cd veya S fazlalığı doğrudan tekrar buharlaşacak ve stokiyometri kendiliğinden korunmuş olacaktır. Oldukça büyük tanecikli (0.5-3 μm) çok-kristal malzeme oluşturmak için büyütülen yüzey üzerinde yeterli atomik mobilite elde edilecek şekilde alttabaka sıcaklığı yükseltilebilir. 400°C den daha yüksek alttabaka sıcaklıklarında, CdS, alttabakadan tekrar buharlaşarak çökeltme işlemine engel olur ve büyüme hızı azalabilir.

\[
\text{CdSe} \rightarrow 2\text{Cd} + \text{Se}_2
\]
\[
\text{MgO} \rightarrow \text{Mg} + \text{O}
\]

Bu tip bileşikler kolayca çökeltilek, alttabaka üzerinde stokiyometri kolaylıkla sağlanabilir.

Diğer bir takım malzemelerin buharlaştırma işleminde, malzemeyi oluştururan elementlerden birisi diğer elementlerden daha hızlı bir şekilde buharlaşarak, malzemenin ayırmasıına neden olur. Bu tip buharlaşma, bileşigi oluşturulan elementlerin buhar basınclarının birbirinden oldukça farklı olması durumunda ortaya çıkar ve bu durum-
da stokiyometriyi korumak oldukça güçtür.

Stokiyometrik tabakalar elde etmek için, flash buharlaştırma yöntemi başarıyla uygulanmaktadır. Bunun için farklı kaynaklardan (A ve B) buharlaştırmalar yapılır. Fakat bu yöntem, çok hassas bir akı kontrollünü gerektirmektedir.

Vakum buharlaştırma yönteminde görülen eksiklikleri ortadan kaldırmak için değişik bir takım düzenlemeler ile- ri sürülmüştür. Aşağıda bunlardan en genel iki tanesi üzerinde kısaca durulmaktadır:

3.2.1. Sıcak-Duvar Buharlaştırma (Hot-Wall Evaporation):

Alt tabakaya olan atom akışını arttırmak ve şekelt-meyi ısısal bir dengede tutmak amacıyla, vakum odası içe-risinde, buhar akış bölgesini çevreleyen sıcak duvarlar (450–600°C) konulabilir.

Sekil 3.2 Sıcak-duvar buharlaştırma sistemi. T_w sıcaklık-ğındaki duvarlar buharlaştırma bölgesini çevrelemiştir.
Duvarlara çarpan atomlar, kaynak sıcaklığına yakın bir sıcaklıkta yansırlar. Yeniden buharlaşma ile oluşan kayıplar, duvarlardan gelen daha büyük akılar ile dengelen Ardından, alttabaka sıcaklığı artırılabilir. Bu düzenlemenin en önemli üstünlüğü, malzeme işrafının önlenmesi ve tanecik büyüklüğünün artırılmasıdır.

3.2.2. Reaktif Buharlaştırma(Reactive Evaporation):

Bu yöntemde, çökeltilen bileşikin elementlerinden birisi, gaz ortamin bir parçası olarak şekilde ayarlanır. Örneğin, SiOx oluşturmak için, küçük bir kısmı O₂ basınçında Si buharlaştırılır. Aynı şekilde ZnO oluşturmak için de, O₂ basınçlı içerisinde Zn buharlaştırılır(Brodie ve ark., 1980).

Şekil 3.3 Vakum Buharlaştırma Sisteminde, alttabakada reaksiyon yardımıyla metal oksit oluşturmak için kismi oksijen basınıcı artırılır.
Yöntemde, farklı numunelerin buharları arasında, kaynaktan alttabakaya giderlerken veya alttabaka üzerinde, kimyasal bir reaksiyon oluşturulur. Bu buhar numunelerinden birisi gaz ortamı olarak seçilir ve bu ortamdan geçirilen diğer elementin buhar numunesi, bu ortam ile kimyasal bir reaksiyona girerek istenen bileşik veya oluşum oluşturulur ve şekillendirilir. Bu yönteme birçok bileşik ve oluşmanın ince film yapıları üretilebilmektedir.

Şekil 3.4 Vakum odasında, numune buharı içinden elektron dameti geçirilerek numune molekülleri aktifleştirilir.
3.3. SPRAY PYROLYSIS YÖNTEMİ

3.3.1. Tarihi Gelişimi:

Spray pyrolysis yöntemi ilk olarak, 1940 yılında geçirilen oksit filmlerin hazırlanması için ortaya atılmıştır. Bu yöntem, en geniş şekilde kullanılan film hazırlama tekniklerinden birisidir.

İlk uygulamalarından biri, Chamberlin ve arkadaşları tarafından, sülfıt ve selenit ince filmlerin güçeltmesidir. Bu bilim adamları daha sonra, bu yöntemden yararlanarak, %2 lik verimli CdS/Cu_{2-x} ince film hücreler hazırladılar. Stanford üniversitesinde Bube yönetimindeki bir grup bilim adami, yöntemi değiştirek, birçok bileşik yararlıkenlerin güçeltmesi kullanılabileceğini hale getirdiler. Bube ve arkadaşları, Zn_{x}Cd_{1-x}S ve Cd_{x}Se_{1-x} katı çözelti filmlerin hazırlanmasında da aynı yöntemi başarılı şekilde kullanıdular. Daha sonra, ZnCdS filmi, p-tipi tek kristal CdTe tabakalar üzerine güçeltilecek, %6-8 verimli güneş pilleri oluşturulmuştur.

Bube nin çalışmalarına paralel olarak, Monpellier üniversitesindeki (Fransa) bir grup bilim adami, 1978 yılında, II-VI bileşiklerinin, özellikle CdS ve Cu_{2}S in spray pyrolysis yöntemiyle güçeltmesi üzerinde çalışmaaları yoğunlaştırıldılar. Ayrıca, 1980 yılında, bu yöntemle hazırlanaran CdS/Cu_{2}S yapılarının verimlerinin artırılması ve kararlılıklarının düzeltilmesi amacıyla bir program başlatıldı.

Hindistan Teknoloji Enstitüsünde, Chopra ve ark. tarafından, spray pyrolysis yöntemi üzerinde yoğun çalışmalar yapılmaktadır. Bu bilim adamları, Zn_{x}Cd_{1-x} filmlerin hazırlanması ve bu filmlerin üzerine Cu_{2}S büyütülmesi konusunda araştırmalarında bulunmaktaydılar. Aynı Enstitüde, spray pyrolysis yöntemi kullanılarak, I-III-VI ternary yararlıkenler, CuInS_{2} ve CuInSe_{2} bileşenleri hazırlanmıştır.

Fransa'da, Vedel yönetimindeki bir grup bilim adami,

3.3.2. Spray Pyrolysis Yöntemi

Spray Pyrolysis yöntemi, basit olarak, ince şekilde atomize edilmiş sulu (aqueous) çözeltinin, uygun bir sıcak alttabakaya spray edilmesi işlemidir. Spray edilecek çözeltide bulunan kimyasal maddeler aşağıdaki koşulları sağlamalıdır:

a) Isısal çözülmede, çözelti içerisindeki kimyasal maddeler, aktif kimyasal reaksiyonlara girebilecek ve böylece istenen ince film malzemelerini oluşturabilecek numunelere ve komplekslerere sahip olmalıdır.

b) Taşıyıcı sıvı içeren çözeltideki diğer bileşenler, alttabaka sıcaklığında kolayca buharlaşabilmelidir. Spray Pyrolysis yöntemi için deneySEL bir düzeneğin şematik blok diyagramı Şek.3.5 te görülmektedir.

Spray işleminin kontrol edilebilir bir atmosferde gerçekleştirilmesi için, spray aygıtı, hava geçirmek bir odaya kapatılır ve değişik durumlarda, alttabaka sıcaklığını ayarlamak için, çeşitli geri besleme devreleri kullanılır. Alttabaka sıcaklığı kökelte işlemi için ol avalia önemlidir ve kökeltilen filmin gerek yapısı gerekse özelliklerini üzerinde etkide bulunabilir.
Şekil 3.5 Spray Pyrolysis yöntemindeki deneySEL düzeneğin şematik blok diyagramı.

Göktelmeye işleminde spray hızı, spray edilen parçacıkların büyüklüğü ve spray deseni, spray hortum başının geometrisine oldukça bağlıdır. Şek.3.6 da, yaygın şekildede kullanılan bazı hortum tipleri görülmektedir.

Şekil 3.6 Spray Pyrolysis yönteminde yaygın şekilde kullanılan hortum başlık tipleri.

Sıkılaştırılmış gaz yardımıyla bu şekildeki atomizasyon işleminden sonra, gaz akışı, küçük damlacıkları ısıtılmış alttabakaya taşır ve damlacıklar alttabakaya yaklaştırılca, ideal koşullarda, damlacık çözeltisi buharlaşarak tamamen buharlaşmayacak bileşenlerin çökeltmesi sağlanır. Bununla birlikte, damlacık büyüklüğünün farklı olması, farklı büyüklükteki damlacıklar farklı isısal davranışlar göstereceğinden, bir takım değişik çökeltme tekniklerine gerek gösterir.

Çökeltme işlemi ile damlacık büyüklüğü arasındaki ilişki şu şekilde özetlenebilir:

(a) Çok İri Damlacık Büyüklüğü:
Bu durumda, alttabakaya yolculuğu sırasında, damlacığın çevresinden alacağı isısal enerji, isınım stage alttabakaya ulaşmadan önce içerdiği çözeltideki malzemenin buharlaşmasına yeterli olmayabilir. Bu ise, buharlaşmadan alttabakaya gelen çözeltinin buradan buharlaşmasına ve altta-
bakada yöresel nokta ve kusurlar oluşturarak film kalitesinin düşmesine neden olur.

(b) Orta Büyüklükte Damlacı:

Damlacıktaki çökeltinin tümü, alttabakaya ulaşmadan hemen önce buharlaşarak geriye -büharlaşmadan sonra artı kalan ve reaksiyona girebilecek- parçacıklar bırakır. Bu artık maddeler alttabakaya çökerek burada erir, buharlaştır ve sonuça yine kusuru kalıdede filme yol açarlar.

(c) Ideal Damlacı Büyükliği:

(d) Çok Küçük Damlacı:

Damlacılar, spray ucundan alttabakaya yolculuklarını sırasında tamamen buharlaştır tak reaksiyonun bitmesine yol açar. Bu durumda, ürün moleküller, mikrokrystaler şeklinda yoğunlaşabilir ve alttabaka üzerinde toplu bir gökelti oluşturur.

Spray hızını arttırmanın bir başka yolu "Havasız Spray Yöntemi" dir. Bu tekniğe, atomizasyon işlemi, çözeltiliyor, özel olarak hazırlanmış bir delikten yüksek basınç altında zorla geçirme ile gerçekleştirilir. Spray ucundan
çıkan damlacıklar, doğrudan alttabakaya ulaşabilecek ve terli hızda sahiptir. Yüksek çözelti konsantrasyonları kullanabilir ve taşıyıcı gazın alttabakada oluşturduğu soğutma gibi etkiler ortadan kaldırılmış olur.

3.3.3. Kimyasal Spray Çökelme:

(1) İlk spray çökelme işlemi ve
(2) Iyon değiş-tokuş işlemi olmak üzere iki işlemin birleşimidir.

CdO filmleri, sulu veya susuz çözeltiler içerisindeki organik veya inorganik Cd tuzlarının, cam alttabakalar üzerine spray edilmesi ile hazırlanır.

CdO filmlerin büyüme hızları, alttabakanın yapısına, çözücü tipine, çözeltinin akış hızına ve alttabaka sıcaklığına bağlıdır. Tüm Cd tuzları, CdO oluşumuna ızın vermeyebilir. Çökelme hızları, dakikada yaklaşık 0.2 μm kadardır.

3.4. SPUTTERING TEKNİKLERİ

Buhar numuneleri, buharlaştırılacak malzeme yüzeyinin (Bu malzeme, hedef veya katod olarak adlandırılır.), yüksek enerjili ve reaktif olmayan iyonlar ile bombardımanı sonucu, atom veya moleküllerin fırlatılmasıyla elde edilir. Sputtering olarak adlandırılan bu fırlatma işlemi yüzeye çarpan iyonlar ile hedef malzeme yüzeyinin atomları arasında momentum aktarımının bir sonucudur. Fırlatılan atomlar, bir alttabaka üzerinde yoğunlaştırılarak, istenen ince film yapısı oluşturulur.

Sputtering işleminin bazı özellikleri şu şekilde özetlenebilir:
(1) Fırlatılan numuneler genelde nötr ve atomiktir. Numunelerin çok küçük bir kesri (< %1) pozitif veya negatif olarak yüküldür. Molekül veya çok atomlu grupların fırlatılma olasılığı ise küçük olup sputtering işleminin parametreleri ile hedef malzeme özelliklerine bağlıdır.
(2) Gelen iyon başına fırlatılan atom sayısı olarak tanımlanan fırlatılma(sputtering) verimi, gelen iyonların enerji ve kütlesi ile artış gösterir. Birçoq durumda, birkaç bin eV un ilerisindeki iyon enerjilerinde verim, çok yavaş şekilde artış göstermektedir.
(3) Fırlatılma verimi, iyonların gelme açısına bağlıdır ve hedef malzeme yüzeyinin normali ile demet yönü arasındaki açı θ olmak üzere, $(\cos \theta)^{-1}$ ile artar.
(4) Fırlatılma verimi, periyodik tablodaki element grupları ile uyumlu bir periyodiklik gösterir.
(5) Tek-kristal bir hedef malzeden fırlatılma verimi, kristalin iyon demeti yönünde azalan geçirgenliği ile artma gösterir.
(6) Fırlatılan atomların enerjisi, yüksek enerji-lere doğru uzun bir kuyruk gösteren bir Maxwell dağılımına uymaktadır.

Fırlatılan atom sayısı gelen iyon sayısı ile oranlı olduğundan, sputtering yöntemi, film gökeltme hızı üzerinde oldukça basit ve hassas bir kontrol mekanizmasına sahiptir. Yüksek iyon akımı yoğunlukları ($\sim 100 \text{ mA/cm}^2$)
ve buna bağlı yüksek çökelme hızları (~100 Å/sn), sadece magnetron sputtering gibi özel sputtering tekniklerinde sağlanabilmektedir. Bu yöntemin bir eksikliği, enerji açısından verimsiz olması ve enerjinin çoğunun ısıya dönüşerek yüksek çökelme hızları için ciddi bir sınırlama oluşturmaktadır. Fıratılan parçacıkların yüksek enerjili olduğu ve büyütülen film yapısının elektron ve negatif iyonlar tarafından bombardıman edilmesi, film büyütülmesi üzerinde oldukça önemli bir etkiye sahiptir.

Çizelge 3.2 de, sputtering yönteminde hedef olarak kullanılan farklı malzemeler için fırlatılma (aşındırma) hızları verilmektedir. Bu hızlar, sputtering yöntemiyle dakikada büyütülen filmlerin kalınlığını ifade etmektedir. Çizelgeden de görüldüğü gibi, aşındırma hızı en yüksek malzeme PbTe (3400 Å/dk.), en düşük malzeme ise Karbon (40 Å/dk.) dur.

ÇIZELGE 3.2

Sputtering yönteminde hedef olarak kullanılan bazı malzemelerin aşındırma (sputtering) hızları

<table>
<thead>
<tr>
<th>HEDEF MALZEME</th>
<th>Aşındırma hızı (Å/dk.)</th>
<th>HEDEF MALZEME</th>
<th>Aşındırma hızı (Å/dk.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>2000</td>
<td>Pt</td>
<td>780</td>
</tr>
<tr>
<td>Al</td>
<td>630</td>
<td>Si</td>
<td>320</td>
</tr>
<tr>
<td>Au</td>
<td>1500</td>
<td>Sn</td>
<td>1500</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>Ta</td>
<td>380</td>
</tr>
<tr>
<td>Cr</td>
<td>540</td>
<td>Ti</td>
<td>340</td>
</tr>
<tr>
<td>Cu</td>
<td>870</td>
<td>W</td>
<td>340</td>
</tr>
<tr>
<td>Fe</td>
<td>500</td>
<td>CdS</td>
<td>2100</td>
</tr>
<tr>
<td>Ge</td>
<td>920</td>
<td>GaAs</td>
<td>1500</td>
</tr>
<tr>
<td>Mo</td>
<td>470</td>
<td>GaP</td>
<td>1400</td>
</tr>
<tr>
<td>Nb</td>
<td>390</td>
<td>InSb</td>
<td>1400</td>
</tr>
<tr>
<td>Ni</td>
<td>560</td>
<td>PbTe</td>
<td>3400</td>
</tr>
<tr>
<td>Pb</td>
<td>2700</td>
<td>SiC</td>
<td>320</td>
</tr>
<tr>
<td>Pd</td>
<td>1100</td>
<td>SiO₂</td>
<td>400</td>
</tr>
</tbody>
</table>
Fazla enerji gerektirmesine karşın sputtering işlemini, herhangi bir çok bileşenli malzemeden yapısalı film çağdaş bir yöntemdir. Katod geometrisine ve aktarım şeklinine bağlı olarak değişik tipte sputtering yöntemleri geliştirilmiştir.

3.4.1. Glow Boşalma Sputtering

İyon oluşturulmasında kullanılan bir basit düzenekte yaklaşık 10^{-2} torr'lık bir gaz (genellikle Ar) basıncı içerisinde, birbirinden 5 cm uzaklıktaki bir anot (üzerine alttabaka yerleştirilmiş) ile bir katod (hedef malzeme) arasına, 1-3 kV lük bir gerilim uygulanan, normal bir boşalma oluşur. Uygulanan gerilimin önemli ölçüde düştüğü karanlık katod uzaklığı (dark cathode distance), d, gaz basıncı ile ters orantılıdır. En yaygın şekilde kullanılan aşındırma -fırsatma-gazı Ar dur. Film çökelme için en uygun basınçlar 25-75 mtorr arasındadır. Gaz atomları ile olan çarpışmalardan dolayı, fırtınalan atomlar, alttabakaya gelişen yön ve enerjilerde ulaşırlar. Fırtınalan atomların bu aktarımının difüzyon karakterinde olduğu, tamamen katod çizgisinde yer almabiliyecik bir çökelme olayına yol açar. Basit bir analizle, en uygun çökelme koşulları altında, katod-anod uzaklığı, karanlık katod uzaklığının iki katı olması durumunda, çökelminin düzensizliğinin hedef malzeme alanının yarısına kadar ulaşabileceğini anlaşılmaktadır.

En yaygın şekilde kullanılan paralel düzlem diod şekilleriminden başka, özel uygulamalar için, tel, silindirik ve konkv katod tipleri de geliştirilmiştir. Bunun yanında, çok-bileşenli veya çok tabakalı yapılar için, bir dizi şeklindeki püskürtme işlemlerinde, bir den faza katod da kullanılabılır.

Çökeltilen filmin nötr veya negatif yüklü Ar atomlari ile, ortamdaki diğer reaktif gaz atomları ile ve elektronlar ile bombardımanı, film üzerinde önemli ölçüde safsızlık ve gaz toplanmasına yol açar (% bir kaç).
Boşalma düzeneği içerisinde basının düştürülmesi, film üzerinde yakalanan gaz içeriğinin azaltılmasına yararlıdır. Ar atomlarının elektronlar tarafından iyonlaştırılma olasılığı, bir magnetik alan kullanılarak arttırılır. Bu yöntemde, 10^{-4} torr luk basınçlarda, $1-10^4$ A/sn lik çökeltme hızları elde edilmiştir. Filme yakalanan gazlar ise, daha sonra altabakanın anoda göre negatif olarak beslenmesiyle ayrılabilir.

3.4.2. Magnetron Sputtering

Birbirine dik elektrik ve magnetik alanların uygulanması durumunda düzenek, magnetron sputtering sistemi olarak adlandırılır. Düzlemsel bir katod sisteminde, katoda paralel olarak bir magnetik alan uygulanır ve elektron hareketi katod yakınları arasında sınırlı tutulur, dolaysıyla filmin elektronlar tarafından bombardımanı önlenerek iyonlaşma verimi arttırılır.

Magnetron sputtering teknikleri ile katod boşalma verimi % 60 a kadar çıkarılabilir, bağlı olarak düşük gerilimlerde (500-1000 V) oldukça yüksek akım yoğunlukları (~50 mA/cm²) elde edilebilir ve çökeltme hızı, diğer tip sistemlerdekinden en az bir mertebe daha büyük tür. Cu in çökeltilmesi durumunda, 30 W/cm² lik bir güçte, 25000 A/dk. lik yüksek bir çökeltme hızı elde edilebilmiştir. Bu teknik, kalayoksit (TO), indiyum kalayoksit (ITO), CdS ve Cu₂S gibi değişik güneş pili malzemelerinin çökeltilmesinde yararlı şekilde kullanılmaktadır.

3.4.3. Iyon Demet Sputtering

Bir iyon demet kaynağı kullanılarak, kontrollü yüksek vakum koşulları altında, aşındırma ile çökeltme işlemi gerçekleştirebilir. Birinci iyon demet çökeltme işleminde, gerekli malzememin iyonları oluşturularak, bir yüzey üzerine toplanır ve ince film tabakası üretilir. İkinci iyon demet çökeltme işleminde, vakum içeri-
sinteldeki bir hedef malzemeden numuneleri fırlatmak ve fırlatılan numuneleri bir alttabaka üzerinde biriktirmek için, bir demet kaynağından yayılan Ar ıyonları kullanılır. Her iki teknik te son yıllarda önemli gelişmeler göstermiş ve vakum çözeltme koşulları altında sputtering işlemler için yararlı fakat pahali bir araç haline gelmiştir. Bu teknik daha çok, Si üzerine kalay oksit film-lerin hazırlanmasında kullanılmaktadır.

3.4.4. Iyon Kaplama (Ion Plating)

Katod olarak seçilen bir alttabaka üzerine malzemenin ısısal buharlaştırılması ve aynı zamanda, bir boşalmadan veya iyon kaynağından pozitif iyonlarla (örneğin Ar⁺) bombardıman edilmesi işlemi, "iyon kaplama" olarak adlandırılır. Bombardıman işlemi, filmlerin dayanıklılı ve adherent olmasını sağlar.

3.4.5. Reaktif Sputtering

3.5. KIMYASAL BUHAR ÇÖKELTME YÖNTEMİ

KIMyasal buhar çökelte tekniklerinin tarihi 19.yy başlarına kadar uzanmaktadır. Silisyum'u saflaştırarak ve çökelteçmek için, silisyum tetraflorid veya silisyum tetra-klorit'in sodyum veya potasyum ile redüksiyonu (indirgenmesi) yöntemleri kullanılmaktaydı. 1930 larda, sülfıt, selenıt, tellürid'ler, bileşik ve oluşımın olduğu kadar metal karbit, nitrit, silisit ve borit gibi yanיטıcı bileşiklerin hazırlanmasında da kIMyasal buhar çökelte yöntemi yoğun şekilde kullanılmaya başlandı. Daha sonraki yıllarda ise, aynı yöntem, ince film tabakalarının hazırlanmasında önemli bir tekniğ olarak ilgi topladı.

KIMyasal buhar çökelte tekniği temelde, altabaka'nın bir veya bir kaça buharlaştırılmış bileşik veya reaktif gaza maruz bırakılması yöntemidir. Bu gaz veya bileşiklerden bazıı veya tümü, çökeltilmesi istenen malzemenin elemanlarını içerir. Altabaka yüzeyinde veya yakınıında kIMyasal bir reaksiyon oluşturularak, istenen malzeme, katı fazda bir reaksiyon ürünü olarak elde edilir ve daha sonra bu malzeme altabaka üzerinde yoğunlaştırılır. Oluşturulan kIMyasal reaksiyonu hızlandırmak mümkündür. Bunun için, ısı uygulanması, bir elektrik alanı veya bir elektrik arığın oluşturulması, altabaka yüzeyinin elektronlarla veya x-ışınları ile bombardımanı gibi değişik yöntemler söz konusudur. Fakat, çökeltilen malzeme tabakasının morfolojisi (yapısı), oluşturulan kIMyasal reaksiyonun doğasına ve reaksiyonu hızlandırma yöntemlerine gidetle bağlıdır.

Bir çok açıdan kIMyasal buhar çökelte yöntemi, buharlaştırma ve püskürte gibi fiziksel çökelme tekniklerine oldukça benzemektedir. Çünkü, her iki tip yöntende de çökelte işlemi bir buhar fazından oluşturulmaktadır. Fakat, kIMyasal buhar çökelme ile fiziksel çökelme yöntemleri arasındaki en açık farklılık, bu teknikte, film oluşturma işleminin, kIMyasal bir reaksiyondan yararlanarak gerçekleştirmesi ve fiziksel çökelme tek-
niklerinde olduğu gibi, gaz moleküllerinin ortalama serbest yolunun, çökelte odası boyutları ile karşılaştırılabılır mertebede veya daha büyük olması gibi bir takım sınırlamaların bulunmamasıdır. Bununla birlikte, kimyasal buhar çökelte teknği, gereksinimlere ve duruma bağlı olarak, düşük basınç veya yüksek vakumda da gerçekleştirebilmektedir.

Kimyasal buhar çökelte teknği'nin en önemli üstünlükleri şunlardır:

(a) Genel olarak, hiçbir vakum veya pompalama işlemini gerektirmeden, film hazırlama düzeneneği oldukça basittir ve aynı düzenek bir çok kez kullanılabilir.

(b) Yöntemle, yüksek çökelte hızları elde edilebilir.

(c) Bileşikleri çökelmek ve bunların stokiyometrielerini kolayca kontrol etmek mümkündür.

(d) Çökeltilcek malzemeyi, istenilen oranlarda safsızlıklarla katılamanak daha basittir.

(e) Çok-bileşenli alışmalardan çökeltilmesi mümkündür.

(f) Vakum buharlaştırılmasına kıyasla daha düşük sıcaklıklarda, yansıtııcı malzemeler çökeltilbilmektedir.

(g) Öldürücü saf ve düşük safsızlık içerikli epitaxial tabakalar bütünebilmektedir.

(h) Karmaşık şekil ve geometrilere sahip cisimlerin kaplamaları yapılabilmektedir.

Bununla birlikte, kimyasal buhar çökelte teknği'nin bir takım eksiklikleri de bulunmaktadır:

(a) Çökelte işleminde yer alan termodinamik mekanizmalar ve reaksiyonlar oldukça kompleksidir.

(b) Çokluıkla, fizinel çökelte tekniklerinde olduğu gibi yüksek sıcaklıklarda alttabakalar gereklidir.

(c) Çökelte işlemlerinde kullanılan reaktif gazlar ve reaksiyon ürünlerini, oldukça zehirli, patlayıcı ve aşınmağa yol açıcı niteliktedir.

(d) Aşınmaya neden olan buharlar, alttabakaya, çökeltilen filme ve düzeneneği oluşturan malzemelere zarar vere-
bilir, ve çökertme işlemleri sırasında oluşan uçucu ürünler, büyütülen film üzerinde safsızlıkların birikmesine yol açabilir.

(e) Yüksek sıcaklıklar, alttabaka yüzeyi üzerinde diffüzyona, kimyasal reaksiyonlara ve alaşım oluşmasına neden olabilir.

(f) Çökertme işleminin düzgünliğini (uniformluk) kontrol etmek güçtür.

(g) Alttabakanın maskelenmesi oldukça zordur. Kimyasal buhar çökertme için, bir veya bir kaç reaktif buhar arasındaki kimyasal reaksiyonlardan yararlanılar. Eğer sıcaklık yeteri kadar yüksek ise, bazan, alttabaka da reaksiyonda yer alabilir. En uygun reaksiyonun seçimi, alttabakaya ve reaksiyon sonuclarına oldukça bağlıdır.

Kimyasal buhar çökertme tekniğinde kullanılan kimyasal reaksiyonlar şu şekilde sınıflandırılabilir:
(1) Ayırıma (Decomposition) Reaksiyonları:
Alttabaka üzerinde hareket eden veya alttabakada şörgülan herhangi bir buharlanmış bileşige, eğer yeteri kadar yüksek enerji verilirse, bu bileşik ayrışır ve katı fazda bir reaksiyon ürünü alttabaka üzerinde yoğunlaşır. Bu reaksiyon şu şekilde ifade edebilir:

\[AB \text{ (gaz)} \iff A \text{ (katı)} + B \text{ (gaz)} \]

Tipik bir ayırmaya reaksiyonu:
\[\text{SiH}_4 \rightarrow (800-1300 ^\circ C) \rightarrow \text{Si} + 2\text{H}_2 \]

Ayırıma mekanizması, 600 ^\circ C yi aşan alttabaka sıcaklıklarının gerektiğini yüksek sıcaklık pyrolysis yön- temi veya 600 ^\circ C ile oda sıcaklıklarını arasındaki sıcaklıklarda gerçekleştirilen düşük sıcaklıklı mekanizmalar şeklinde sınıflandırılabilirmektedir. Metal halidler, özellikle iyodidler, yüksek sıcaklıklı ayırmaya uğrarlar. Metal hidritler, metal karboniller, kompleks karboniller, bir çok organometalik bileşikler ve metal borohalidler ise düşük sıcaklıklarda ayrıırlar.
(2) İndirgeme (Reduction) Reaksiyonları:
Bir indirgeme reaksiyonu, ikinci bir reaksiyon numunesinin varlığı ile oluşan bir ayrışma reaksiyonu olarak ele alınabilir. Çökelme, daha düşük sıcaklıklarda oluşur. Eğer çökeltilecek malzeme, metal halider, karbonil halider, oksihalider veya diğer oksijen içeren bileşikler ise, indirgeyici madde olarak hidrojen veya metal buharları kullanılır.
Tipik bir indirgeme reaksiyonu:
\[\text{SiCl}_4 + 2\text{H}_2 \rightarrow \text{Si} + 4\text{HCl} \]
İndirgeyici olarak metaller kullanıldığında, çökeltilen malzemede kirlenme oluşтурabilirler. Bunu önlemek için, metal, stokiyometrik oranlarda kullanılır ve işlem (reaksiyon) düşük bir basınçta gerçekleşir.

(3) Polimerizasyon (Polymerization):
Polimerizasyon tekniğinde organik ve organik-inorganik bileşiklerden monomerler oluşturulur. Monomerlerin molekülleri, aşağıdaki reaksiyonlardan birisi ile birbiri rine bağlanmıştır:
(a) Elektron veya iyon bombardimanı,
(b) İşık, X-ışını veya gamma ışınlarına tutulma,
(c) Monomer buharı içerisinde elektriksel boşalma meydana getirme,
(d) Yüzey katalizi tekniği.
Polimerizasyon ile elde edilen filmler, yarıiletkenlerden yalıtkanlara kadar değişen elektriksel özellikler gösterirler ve yüzeyi tamamen kaplama, iyi tutma yapışma), düşük gerilme ve yüksek plastikliğe sahip olma gibi bazı özelliklerinden dolayı oldukça yoğun şekilde kullanılmaktadır.

(4) Aktarım (Transport) Reaksiyonları:
Kimyasal buhar çökelme yönteminde, kaynak konumundaki uçucu olmayan bir malzeme, bağlı olarak oldukça uçucu bir buharın kullanılması ile alttabaka konumuna aktarılabilir. Bu işlem üç basamakta gerçekleşir:
(a) Kimyasal bir reaksiyon yardımıyla kaynak malzemisinin uçucu bir bileşik haline getirilmesi,
(b) Bu buharın alttabakaya aktarılması,
(c) Buharın alltabaka üzerinde veya alltabakada ayrışarak kaynak malzemesinin gökeltılması.

3.6. DEĞİŞİM (EXCHANGE) REAKSIYONLARI

Bakır kalkojen filmleri, bir iyon değişim (exchange) reaksiyonu ile hazırlanabilirler:

\[\text{CdY} + 2\text{CuX} \rightarrow \text{Cu}_2\text{Y} + \text{CdX}_2 \]

Burada X bir halojen atomunu (Cl, Br veya I) ve Y, bir kalkojen atomunu (S, Se veya Te) göstermektedir. Bu işlem aynı zamanda, "daldırma-dipping" veya "kimyasal kaplama-Chemiplating" olarak ta adlandırılır ve yukarıdaki reaksiyondan da anlaşıldığı gibi, bir Od iyonunun iki Cu iyonu ile yerdeğiştirmesi reaksiyonudur. \(\text{Cu}_2\text{S} \) ve \(\text{Cu}_2\text{Te} \)
film lerin hazırlanmasında bu teknikten oldukça yararlanılmaktadır. Reaksiyon sonucu oluşan CdX₂ ise su veya metanol içeresinde temizlenir.

Değişim (Exchange) reaksiyonu genelde, 90-100°C aralığında değişen sıcaklıklarda, sulu çözelti içerisinde gerçekleştirilir. CuX çözülebilirliğini artırabilme için, NaCl veya NH₄Cl gibi tuzlar eklenir. Cu⁺ iyonlarının oksidasyonunu önlemek için, indirgeyici element olarak hidrozin veya hidroksilamin (hidroxyamin) kullanılır. Sulu çözelti yerine organik bir çözeltinin kullanılabilmesi bazı yerlerde yapılan çalışmalar tarafından ileri sürülmüştür (M. Savelli ve J. Bougnot, 1979).

CdS/Cu₂S güneş pillerinin hazırlanmasında kullanılan tipik bir daldırma çözeltisi:

<table>
<thead>
<tr>
<th>İsim</th>
<th>Değer</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuCl</td>
<td>4 g/lt</td>
</tr>
<tr>
<td>NaCl</td>
<td>6 g/lt</td>
</tr>
<tr>
<td>PH</td>
<td>3,0</td>
</tr>
<tr>
<td>Banyo Sıcaklığı</td>
<td>97°C</td>
</tr>
</tbody>
</table>

Reaksiyon hızı, çözeltide bulunan Cu iyonu sayısına siddetle bağlıdır. Elde edilen tabakanın kalınlığı ise, daldırma süresinin bir fonksiyonu olup, diğer tüm parametreler sabit tutulduğunda daldırma süresi ile artar. 2000 °A kalınlığıta bir Cu₂S tabakası oluşturmak için gerekli daldırma süresi 5-10 sn mertebeindedir. Şek. 3.7 de tabaka kalınlığının daldırma süresine bağlılığı görülmektedir. Grafikte ayrıca değişik parametre etkileri de gösterilmiştir.

Reaksiyon tipotaxial olduğundan, Cu₂S tabakasının mikroyapısı, CdS tabakasının mikroyapısının kopyası şeklindedir. Göktülgen tabakaların stokiyometrisi, reaksiyon hizına ve çözelti içerisinde bakır iyonunun oksitlenme durumuna bağlıdır.

Chemiplating (kimyasal kaplama) yöntemi, Cu₂S/CdS pillerin üretiminde geniş şekilde kullanılmakla birlikte bazı eksiklikleri vardır. Bu eksiklikler daha çok sınırlamaldan kaynaklanır:

1) CdS tabakaındaki safisizlıklar ve özellikle ta-neçik sınırlarlarından, oldukça hareketli Cu iyonlarının
hızlı diffüzyonu, CdS tabakasının en az 25 μm lik kalın-
likta olmasını gerektirmektedir.

ii) Cu_x S tabakasının stokiyometrisinin kontrolünde
eksiklikler vardır.

iii) Reaksiyon sonunda, Cu_x de, Cu ve Cd gradyant-
leri (yoğunluk değişimleri) oluşmaktadır.

iv) İstenilen kalınlığa ulaşılır ulaşılmaz reaksiyon
ani olarak kesildiğinden, Cu_x S tabakasının büyütülmesin-
de homojen olmayan özellikler görülmektedir.

![Graph](image)

Sekil 3.7 Daldırma ile hazırlanan Cu_2S filmlerin büyütme
kinetikleri üzerinde çökeltme parametrelerinin etkisi.

Katı durumda bir değişim(exchange) reaksiyonu,kulla-
nılırak, bu problemler ortadan kaldırılabilir. Bu tip re-
aksiyonlarda, CuCl filmi, vakum buharlaştırma ile, CdS
tabaka üzerine çökeltildir. CuCl tabakasının kalınlığı,
istenilen Cu_x tabaka kalınlığına bağlı olarak tayin edil-
mektedir. CdS/CuCl film bileşimi ısıtılarak, iki film ara-
sında bir reaksiyon oluşturulur. Büyütülen Cu_x S tabakası-
nın kalınlığı, CuCl tabaka kalınlığı ile hassas şekilde
kontrol edilebilir. Reaksiyonda diffüzyon kontrolu mümkün
kün olduğundan, tabaka içerisinde herhangi bir Cd veya Cu
yoğunluk değişimi oluşmayacaktır.

3.7. ELEKTROÇÖKELTME YÖNTEMİ

Bir elektrolit içerisinde elektrik akımının geçmesi ile kimyasal değişikliklerin ortaya çıkmasına "elektroliz" olayı adı verilmektedir. Herhangi bir malzemenin, bir elektrot üzerine (örneğin altabaka olarak seçilen bir malzeme üzerine) elektroliz yardımıyla çökeltilmesi işlemi ise "Elektroçökelte" olarak adlandırılır. Bu yöntem düşük maliyetli olup, endüstriyel üretimde yaygın olarak kullanılabilmektedir. Elektroliz olayını önenden iki kanun vardır ve ilk defa Faraday tarafından, 1833 yılında ortaya atılmıştır:

(1) Elektrolizde oluşan kimyasal değişimin büyüklüğü elektrolitden geçen elektrik akım miktarı ile orantılıdır.

(2) Elektrotlar üzerine aynı siddetle elektrik akım ile çökeltilen değişik numunelerin küteleri, bu numunelerin kimyasal eşdeğer ağırlıkları ile doğru orantılıdır. Bu iki kanun matematiksel olarak birleştirilebilir:

\[W = I E t / F \]

Burada, \(W \), çökeltilen altabaka malzemesinin kütlesi (gr), \(E \), kimyasal eşdeğer ağırlığı (gr), \(I \), geçen akım (amper), \(t \), reaksiyon süresi (sn) ve \(F \) faraday sabitidir. \(F \) sabit, 96.500 C ye eşit olup bir çözeltiden, herhangi bir iyon eşdeğer miktarının çökeltilmesi için gerekli yük miktarını ifade eder.

Metal bir elektrot, aynı metalin iyonlarının içeren bir çözelti içerisinde daldırıldığında, dinamik bir denge kurulur:

\[M \rightarrow ^{+x}M + Xe \]

\(M \), metal atomudur. Bir dış gerilimin yükbuahında, elektrot ile elektrolit arasındaki sonuç gerilim farkı, "elektrot gerilimi" olarak adlandırılır. Bu gerilim sonucu, elektrot belirli bir yük kazanır ve zıt yükü iyonlar ile su molekülerini çekerek, elektrot/elektrolit arayüzünde
Bu şekilde bir çift tabaka oluşur. İçteki tabaka, belirli şekilde yönelmiş su dipolleri ile işgal edilmiş ve dış kısım, elektron ile zıt yüklü iyonlardan oluşmuştur. Gökeltme sırasında (bir dış gerilim uygulandığında) iyonlar elektron yüzeyine ulaşır, bu yüzey üzerinde su moleküllerini veya değişik komplekslerden oluşan kısımları bırakır ve daha sonra elektrokimyasal reaksiyonlara girerler. Iyonların elektrolit sıvısı içerisindeki hareketi aşağıdaki mekanizmalarından kaynaklanır:

i) Yoğunluk değişiminin yol açtığı diffüzyon,
ii) Uygulanan elektrik alanı nedeniyle göç olayı ve
iii) Elektrolit içerisindeki konveksiyon akımları.

Elektroliz işleminde, gökeltilen filmin özelliklerini belirleyen karakteristikler ise şunlardır:

(a) Akım yoğunluğu,
(b) Banyo karakteristikleri (banyo sıvısının bileşimi gibi). Örnek olarak, anyon veya kationun yapısı, gökeltilen filmin özelliklerini siddetle etkiler.
(c) Elektrodun şekli,
(d) Elektrolit sıvısı içerisinde dalgalanmalar (özellikle konveksiyon akımlarının oluşturduğu değişiklikler).

Bu konveksiyon akımları, elektrolit sıvısının konsantrasyon değişimlerini önlemeye yardımcı olur.

Elektrokısaltma işlemi, gerek metal ve alevlerin gerekse yarımiletkenlerin hazırlanmasında geniş şekilde kullanılmaktadır. Şek.3.8 de elektrokısaltma ile hazırlanmış Cu-S filmlerin büyümeye karakteristikleri ve stokiyometrinin sıcaklık ile akım yoğunluklarına bağlılığı görülmektedir.

- 2.00
- 1.96
- 1.92

Stokiyometri(x)

62°C
48°C

: 1 dk. lik kaplama sü.
: 5 dk. lik kaplama sü.

Akım Yoğunluğu
(mA/cm²)
Şekil 3.8 Elektrokaplanmış Cu₆S filmlerin (a) Stokiyometrlerinin sıcaklık ve akım yoğunluğuna, (b) Kalınlıklarının zamana bağlılığı.

3.8 ELEKTROFORESESİS (ELECTROPHORESİS) YÖNTEMİ

Bu yöntemde, bir sıvı ortam içerisinde asılı duran (suspended) elektriksel olarak yüklü parçacıklar, bir elektrot üzerine çökeltilir. Bu şekilde çökeltilen filmler, genellikle, adherent olmadığından, sıkı, sağlam ve mekanik olarak daha güçlü yüzey kaplamaları oluşturmak için ikinci bir çökelme işlemi gerekmek. Bu ikincil işlem, genellikle basınçla sıkıştırma, film içerisindeki parçacıkları sinterleme ve isolal işlemlerden oluşur. Sıvı ortam içerisinde asılı duran kolloidal parçacıklar, yada daha büyük parçacıkların kolloidal büyüklükler halinde (10-5000 Å) parçalanması ile veya daha küçük parçacıkların (genellikle iyon veya moleküllerin) birleştirmeleri, daha büyük parçacıklar oluşturulması ile elde edilir.
Sıvı ortam olarak (sulu çözeltiler) aseton veya metil-, etil- ve propilalkol gibi organik çözücüler kullanılır. Organik çözücü ortamlardan çökelte için gerekli gerilim birkaç yüz volt mertebesinde, sulu ortamlardan çökelte için gerekli gerilim ise 15 V civarındadır.

Bu yöntem, yarışım amacıyla, tungsten tel üzerine alümina kaplanmasında kullanılmıştır. Ayrıca, Cu₂S/CdS güneş pillerindeki CdS filmlerin hazırlanmasında da aynı yöntemden yararlanılmıştır (William ve ark., 1979). CdS filmlerin hazırlanmasında, CdS kolloidal parçacıkların süspansiyonu, bir Cd(CH₃COO)₂ ve su çözeltisi içersinden H₂S geçirilmesi ile elde edilmiştir. Zn₂Cd₇₋ₓS filmlerin hazırlanması için ise, Zn(CH₃COO)₂ çözelti içerisinde elenmiştir. Çözeltili, alkol ile sevrildikten sonra, 2.56 mA/cm² lik bir akım yoğunluğu ve 33 V/cm lik bir elektrik alan kullanılarak paslanmaz çelikten bir anot üzerine çökelte yapılıştır.

Elektroforesis tekniği hem iletken hem de yarışkan-ların hazırlanmasında oldukça kullanılıp ve uygun bir yöntemdir. En önemli üstünlükleri:

(a) Uygulamada, toz haline getirilmiş herhangi bir malzeme bir iletken alttabaka üzerine çökeltebilir,
(b) Oldukça karmaşık şekiller için bile düzgün (uniform) kalınlık elde edilir,
(c) Çok kalın kaplamalar çökeltebilir ve kalınlık hassas şekilde kontrol edilebilir,
(d) İki veya daha fazla malzemenin, istenilen oranlardan ve aynı zamanda çökeltilmesi sağlanabilir,
(e) Çökelte süresi çok kısa olup genellikle sn veya birkaç dakika mertebesindedir,
(f) Çökeltececek malzemenin israfı söz konusu değildir.
IV. Cu\textsubscript{x}/CdS GÜNEŞ PİLLERİ

Cu\textsubscript{x}/CdS güneş pili yapıları heteroeklem yapılandır ve bunlar için genel bir model kabul edilirken görül birliğe varılan konular şu şekilde özetlenebilir:
- Işıklı taşıyıcı oluşumu için optiksel bakımdan aktif bölge Cu\textsubscript{x} tabakasıdır,
- Cu\textsubscript{x} tabakasında işıklı oluşan elektronlar, toplanmak üzere, CdS içersine enjekte edilir,
- Çalışma koşulları altında, eklem üzerinden, yenidenbirleşme ve tünelleme olayları ile ve arayüzey durumları aracılığı ile bir doğru-besleme akımı akar,
- Hücrenin üretimindeki isisal işlerin sırasında, CdS içersine Cu diffüzyonu oluşur ve CdS kısımdaki tüketim tabakası genişler,
- Yüksek enerjili foton ışması eklem genişliği üzerinde belirli bir etki gösterir,
- Karanlıkta ve aydınlanma durumundaki doğru-besleme I-V (akım-gerilim) karakteristikleri (karakteristik eğrileri), isisal işleme tutulan hücrelerde genellikle çarkışma gösterir ve
- Cu\textsubscript{x} bileşimindeki değişimlerden veya bazı durumlarda CdS içersine fazladan Cu diffüzyonundan dolayı, duyarlılıkta uzun süreli kayıplar oluşur.

Cu\textsubscript{x}/CdS hücreleri kompleks yapıdadırlar. Bunun bazı nedenleri ise aşağıdaki gibi açıklanabilir:

1. Heteroeklem yapının kendisi, farklı elektron affinitelerine, farklı band aralıklarına ve farklı kristal yapılarına sahip iki malzeme arasında oluşturulun bir yapı olduğundan, kompleksdir.

2. Örgü uyumsuzluğu ve bileşenlerin birbirine diffüzyonu, arayüzeyde veya arayüzey yakınında safsızlık durumları oluşturarak eklem özelliklerini önemli şekilde
etkiler. Özellikle arayüzeye komşu olan CdS içerisine Cu diffüzyonu önemli bir durumdur.

(3) Oda sıcaklığında, herbiri oldukça farklı fotovoltaik özellikler gösteren değişik Cu$_x$S fazları vardır. Hücre üretim sırasında, Cu in atmosferle etkileşmesinden veya CdS içerisine diffüzyon etmesinden dolayı, bir faz durumundan diğerine geçişler oluşabilir.

(4) CdS ince filmler ile yapılan hücrelerde, arayüz belirsizliğinden, tanecik sınırlarından ve rastgele kristal yöneliminden kaynaklanan kompleks etkiler de söz konusudur.

Şekil 4.1 Cu$_2$S/CdS ince film güneş pilinin şematik olarak gösterimi.
4.1. \(\text{Cu}_x \text{S} \) VE \(\text{CdS} \) İN ÖZELLİKLERİ

4.1.1. \(\text{Cu}_x \text{S} \) Tabakalar :

Oda sıcaklığında \(\text{Cu}_x \text{S} \) nin kararlı formu oldukça kompleks ve ideal \(\text{Cu}_2\text{S} \) formunda, birim hücre başına 96 molekül içerir. Oda sıcaklıklarında ve daha yüksek sıcaklıklarda üç değişik faz gözlenmektedir:

1. CHALCOCITE \((x \approx 1.995-2.000)\)

Oda sıcaklığında orhotorombik yapıda olup 104 °C de hexagonal yapıya geçer.

2. DJURLEITE \((x \approx 1.96)\)

Oda sıcaklığında orhotorombik yapıda olup 86-93 °C de tetragonal ve 100 °C de kübik yapıya geçer.

3. DIGENITE \((x \approx 1.8)\)

Oda sıcaklığında psedo-kübik yapıda olup 78 °C de kübik yapıya geçer.

\(\text{Cu}_x \text{S} \) nin bu formlarının her biri farklı fotovoltaik özellikler gösterir. Bu sonuçlar, Te Velde ve Dieleman (1973) tarafından, yüksek kontrastlı mikroskop kullanılarak bir film halinde gösterilmiştir. Faz değişimlerinde alt yapı değiştirmez kalır (S alt örgü) ve Cu atomları bu alt örgüde dolaşarak değişik fazları oluştururlar. Şek.4.2 de \(\text{Cu}_x \text{S} \)nin faz diagramı görülmektedir.

\[\text{Şekil 4.2} \text{ Cu}_x \text{S malzemesinin faz diagramı.}\]
Şekil 4.3 te, Cu₅Sn nin üç faz durumu için optik soğurma spektrumları görülmektedir. Ölçülen spektrumlardan, en verimli faza Chalcocite fazının karşılığı geldiği görülmektedir.

Şekil 4.3 (a) c-eksenine paralel ve (b) c-eksenine dik kütuplanmış ışık için üç Cu₅Sn fazının soğurma spektrumları.
Chalcocite (Cu₂S) fazı, kusuru p-tipi bir yarı-iletkenendir. Gözlenen taşıyıcı yoğunlukları 10¹⁸-10²¹ cm⁻³ cıvarındadır. Kaydedilen değişik mobiliteleri düşük olup ince film yapılar için 2-7 cm²/Vsn arasında-dır (Stanley, 1975; Savelli ve Bougnot, 1979). Bu ne- denle, öz dirençler katlızlı malzemeler için 10⁻³ 6x10⁻¹ ohmcm arasında ve Cd katlı malzemeler için 10³ ohmcm mertebe Lindsey. CuₓS fazları üzerinde yapılan ölçümler sadece Chalcocite fazının 50 Å den daha büyük elektron diffüzyon uzunluğuna sahip olduğunu göstermektedir. Dieleman, bu fazdaki elektron diffüzyon uzunluğunun, c-eksenine dık durumda 350 Å olduğunu kaydetmiştir.

Cuₙ₋ₓS tabakaların hazırlanma yöntemleri oldukça değişiktir. Bu yöntemlerden başlıcaları şu şekilde sıralanabilir:

1) Wet (İslak) Yöntem. Bu yöntemde, sulu bir çözeltideki Cu iyonları, CdS tabakadaki Cd atomlarının yerini alarak Cuₙ₋ₓS tabakaları oluşturur.

3) Sputtering (Aşındırma) Yöntemi. Cu, H₂S veya Ar atmosferi içerisinde, aşındırma yardımıyla çözelttilir.

5) Sulfürleştirme Yöntemi. H₂S ve H₂ atmosferi içerisinde, 200-400 °C de Cu sulfürleştirilir.

Cuₙ₋ₓS tabakasının yapısı ve stokiyomtrisi, 1şıkla oluşan taşıyıcıların sayısını belirlemeye ve hücrenin kararlığını taşıyıp etmede temel faktördür. Stokiyometri, Cuₙ₋ₓS tabakasının dirençliliğini de etkilemekte, stokiyometrinin kendisi ise, hem üretim ve kaplama tekniklerinin ayardılarından hem de çevresel koşulardan etkilenmektedir.

4.1.1a. Cuₙ₋ₓS Üzerindeki Yüzey Yenidenbirleşmesi

Cuₙ₋ₓS tabakalarda yüzey yenidenbirleşme kayıpları çok küçük olmakla birlikte bunun nedenleri tam olarak bilinememektedir. Üç olasılık ileri sürülmiştir:

1) Cuₙ₋ₓS malzemesi, doğal olarak, ağırlığının dişinda düşük bir yenidenbirleşme hızına sahiptir.

2) Cuₙ₋ₓS tabakası, 1şıkla oluşan taşıyıcıları yüzeyden uzaklaştırılan elektrik alanı yönünde (malzeme kalınlığı boyunca) homojen değildir.

4.1.1b. Cu₂S Tabakasının Topografisi

Bu Cu₂S tabakaların üç boyutlu filmleri, Mukherjee ve arkadaşları (1978) tarafından ortaya atılan teorik bir akım aktarım modelinde incelenmiştir. Mukherjee, uzun dalgaboyu tepkisinde artışlar olduğunu ileri sürmüştür.

4.1.1c. Cu₂S Tabakaların Stokiyometrisi

Daha önce de belirtildiği gibi, Cu₂S tabakasının optik ve elektrik özellikleri, x değerine bağlı olarak önemli ölçüde değişmektedir. Optik soğurma, 1.9 < x < 2.0 aralığında, x ile şiddetli şekilde artar. Cu₂S kusuru bir yarımiletkendir ve yapısında akseptör olarak davranan Cu boşlukları vardır. x değerindeki değişim, malzeme içerisindeki taşıyıcı yoğunluğunu değiştirir ve taşıyıcı yoğunluğundaki bu değişim, hem iletkenliği hem de azalılık taşıyıcı ömrünü etkiler. Bir Cu₂S/CdS güneş pili için en uygun x değeri, x > 1.995 olarak tahmin edilmektedir (yani büyük taşıyıcı yoğunluklu Chalcocite malzeme).
Cuₙₐ tabakasının oluşturulması sırasında stokiyometri kontrolü aşağıdaki yöntemlerle gerçekleştirilir:

a) "Wet" yöntemde, daldırma çözeltisi içerisine indirgeyici kimyasal maddeler eklenir.

b) "Spray Pyrolysis" yönteminde, "Kimyasal Buhar Çökelme", "Vakum Buharlaştırma" ve "Sputtering" yöntemlerinde, Cu eklenir.

c) "Elektrokimyasal Çökelme" yönteminde, akım yoğunluğu ve sıcaklık sürekli kontrol edilir (Nakayama ve arkadaşları, 1971).

Birçoq durumda, tabaka oluşturulduktan sonra x değerinin ayarlanması gerekebilir. Bunun için, değişik atmosferik ortamlarda (H₂, CO veya Vakum gibi) çeşitli ısısal işlemler uygulanır (Bragagnolo ve ark., 1980). x in 1.994 < x < 2.000 aralığında, stokiyometri ve levha dirençliliği, değişik ısısal işlemler ile indirgeyici ortamlarda bir takım ısısal işlemler yardımıyla kontrol edilebilir. Bogus ve Mattes (1972) tarafından ortaya atılan bir diğer stokiyometri kontrol yönteminde, Cuₓₗ yüzeyi üzerinde ince bir metalik Cu filmi oluşturulur ve Cu yoğunluğu tabakadaki yoğunluk ile çakışına kadar sürekli tavlama işlemine tutulur. Cu film tabakasının oluşturulması ise, ya Cuₓₗ nin bir kısının, atomik hidrojen içerisinde, bir boşalma sonucu azaltılmasıyla ya da doğrudan Cu in vakumda buharlaştırılmasıyla gerçekleştirilir.

Stokiyometrideki değişiklikler hem Cuₓₗ filmlerin tabaka özelliklerini hem de Cuₓₗ/CdS hücrelerin kuantum
etkinliklerini değiştirmektedir. Bu değişimlerdeki bazı mekanizmalar belirsiz olmakla birlikte birçok teori geliştirilmiştir.

Palz ve arkadaşları (1972), x in değişimmesinin esas etkisini, malzemenin fazları arasındaki oranlarda meydana getirdiği değişim olduğunu ileri sürmüşlerdir. Bu konuda şu gözlemlerde bulunmuşlardır: Chalcocite için kısa devre akımı, Djurleite için kısa devre akımından yaklaşık 10 mertebe daha büyük ve $1.95 < x < 2.00$ aralığında x ile hemen hemen lineer bir değişim göstermektedir. Ayrıca, x in 1.95 den 2.00 değerine girmesi durumunda, tabaka öz direncinde 20 katlı bir artma olduğudan görülmüştür. Sek.4.4 te, Cu$_x$S tabakasında, kısa devre akıının tabaka stokiyometrisine bağımlılığı görülmektedir.

Şekil 4.4 Cu$_x$S malzeme stokiyometrisinin fonksiyonu olarak Cu$_x$S/CdS güneş pili hücresinin kısa devre akımı.
Pfisterer ve arkadaşları (1979), Cu₂O tabakasının varlığı veya yokluğundan dolayı yüzey yenidenbirlgeme hızında değişimlerin oluşabileceğini ve x in arttırmaması ile azınlık taşıyıcı diffüzyon uzunluğunun daha iyi bir değere getirilebileceğini ileri sürümlerdir.

(a) Soğurma katsayısını,
(b) Taşıyıcı yoğunluğunu,
(c) Taşıyıcı ömrünü,
(d) Mobilitesi,
(e) Yenidenbirlgeme olaylarını ve
(f) Cu₈S/0dS arayüzindeki band bükülmelerini etkilemekte, bu etkiler ise hücre çarkısında değişiklikler yapmaktadır.
4.1.2. CdS İnce Filmler

Çok-kristal CdS ince filmler, hangi yöntemle hazırlanmış olsun, 2.42 eV luk direkt band aralığı, n-tipi, saydam ve sarı renkli bir malzemedir. Oda sıcaklığında çinko blend yapı göstermekle birlikte, genellikle hexagonal wurtzite yapıda bulunur. Bu malzemede elektron yoğunluğu yaklaşık 10^{16} cm$^{-3}$ civarındadır. (3×10^{16} ile 4×10^{17} cm$^{-3}$ arasında). Farklı yöntemlerle elde edilen CdS filmler, 0.07 eV ile 0.50 eV arasında değişen engel yüksekliklerine sahiptir. En yaygın değerler 0.10-0.20 eV arasındadır. Elektron mobiliteleri $1-10^5$ cm2/Vs arasında değişir.

CdS filmlerinde elektron yoğunluğu ve mobilitelere sıcaklık bağılı olarak değişim gösterir. Spray pyrolysis yöntemiyle hazırlanan bir CdS ince film için elektron yoğunluğu ve mobilitenin sıcaklıkla değişimi Şek.4.5 te görülmektedir.

Şekil 4.5 Elektron yoğunluğu ve mobilitenin sıcaklıkla değişimi. (L:Tungsten Işıması= 50 mW/cm2)
CdS filmler, In, Sn, Al, Cl veya Br ile kolaylıkla katkıları ve tüm bu katkı maddeleri ile, yüzeysel donor safsizliklara sahip malzemeler oluşturur. Film veya kristal büyüme sırasında aşıri Cd varlığı ile, ek bir safsizlik katkısı yapılmasa bile, 0.1 ohm’un altında özdirenç değerleri gözlenebilir.

Film özelliklerinde daha uzun süreli değişiklikler oluşturmak için isısal işlemlerden yararlanılabilir. Eğer CdS filmin yüzeyinde ve taneciğin sınırlarında oksijen sağlanıyorsa, CdS iletim bandından elektronların ayrılarak oksijenle kimyasal bağ oluşturulması söz konusudur ve bu, yüzeyde ve taneciğin sınırlarında bir tüketim tabakası meydana getirir. Bu sağlanan oksijen, vakum içerisinde çeşitli isısal işlemler yardımcı ile çıkarılabilir.

CdS filmlerinin dirençliliği de yüksek sıcaklıklarda isısal işlemler ile önemli şekilde değiştirilebilir. Sek.4.6 da, tavlama sıcaklığına bağlı olarak dirençlilikte görülen değişim verilmektedir.

![Şekil 4.6 Dirençliliğin tavlama sıcaklığına bağlılığı.](image)

Şekil 4.6 Dirençliliğin tavlama sıcaklığına bağlılığı.
Yüksek sıcaklıklarda gözlenen değişim etkilerini açıklamak amacıyla değişik görüşler ileri sürülmüştür:

(i) Tanecik sınırlarında sogurulan oksijen miktarı belli bir artış gösterir,
(ii) Tanecik sınırları içerisinde hidrojen adsorbe edilerek akseptör durumlarının etkisi azaltılır,
(iii) Tanecik büyüklüğü artacak şekilde kısmi yeni kristalleşme oluşur ve
(iv) Kristal ara durumlarından S kaybı oluşur, bu ise donor yoğunluğunu artırır (ara konumlardaki Cd ve S boşlukları donor olarak davranmaktadır).

Şekil 4.7 CdS filerin geçirgenliklerinin film kalınlığı ve alttabaka sıcaklığına bağlılığı.

Bu yöntemlerden bazıları şu şekilde sıralanabilir:
1) Vakum Buharlaştırma,
2) Spray Pyrolysis,
3) Sputtering yöntemi,
4) Buhar Çökeltme yöntemi,
5) Anodizasyon yöntemi,
6) Elektroliz yöntemi,
7) Chemiplating (kimyasal kaplama),
8) H₂S atmosferi içinde CdS in püskürtülmesi işlemi.
4.2. Cu\textsubscript{x}S/CdS İNCE FILM GÜNEŞ PİLLERİ

4.2.1. Hücre Geometrisi

Cu\textsubscript{x}S/CdS ince film güneş pilleri iki temel modda çalışır: Ön yüz (Front wall) ve Arka yüz (Back wall) modu. FW(ön yüz) modunda ışık, soğurucu tabaka (Cu\textsubscript{x}S) üzerine gelirken, BW(arka yüz) modunda aydınlatılma durumu pencere tabakası (CdS) üzerinden gerçekleştirilir. Şek.4.8 de, FW ve BW Cu\textsubscript{x}S/CdS güneş pili hücresinin şematik gösterimi verilmektedir.

Şekil 4.8 (a) FWR ve (b) BWR modunda çalışan Cu\textsubscript{2}S/CdS ince film hücrelerin şematik gösterimleri.
Eğer kontaklar yüksek şekilde yansıtırıcı ise, yan gelen ışık hücre içerisinde çift kez veya birkaç kez geçiş yapmaya zorlanıyorsa, bu durumda çalışma, front wall reflecting (ön duvar yansıtırıcı) -FWR veya back wall reflecting (arka duvar yansıtırıcı) -BWR olarak nitelendirilir. Yüksek verimli hücreler genellikle FWR veya BWR modunda çalışan hücrelerdir.

Vakum buharlaştırılmış Cds tabakalardan üretilen birçok \(\text{Cu}_2\text{S}/\text{Cds} \) ince film hücre FW tipinde, spray yöntemi ile hazırlanı hücresler ise çoğunlukla BW tipindedir. Ayrısalı durumlar da olabilir (örneğin vakum buharlaştırılmış BW hücreler de üretilmişdir).

İnce film \(\text{Cu}_2\text{S}/\text{Cds} \) filmlerin üretiminde çok değişik alttabaka malzemesi başarılı şekilde kullanılabilmiştir. Bunlar: Zn kaplanmış Cu, \(\text{Cd}_2\text{SnO}_4 \)/Silika, Cr/Ag, Cr/Pb, Cr/Au, Ag ve Nb kaplanmış cam, Fe ve Au kaplanmış poliamidler ve Fe alttabakalardır.

En iyi hücreser Zn kaplanmış Cu alttabakalardır ve FWR modunda çalışırlar.

\(\text{Cu}_x\text{S}/\text{Cds} \) hücreler, üretim şekline bağlı olarak da iki genel sınıfa ayrılabılır. (Vakum) Buharlaştırılmış hücreler ve Spray edilen hücreler. Bu hücreler, hazırlanma yöntemlerinin değişik özelliklerinden dolayı farklı hücre karakteristikleri ve çıkış parametreleri gösterebilirler. \(\text{Ciz.4.1} \) de, çeşitli üretim teknikleri ile hazırlanan \(\text{Cu}_2\text{S}/\text{Zn}_x\text{Cd}_{1-x} \text{S} \) güneş pil hücrelerinin verim karakteristikleri karşılaştırılmaktadır.

4.2.2. Hücrelerin Mikroyapısı

Buharlaştırıma ile elde edilen hücreler ile spray yoluya elde edilen hücrelerin mikroyapısı ve morfolojisini önemli ölçüde farklıdır. İlk önce, buharlaştırıma ile oluşturulan hücreler kısaça göszen geçirecektir.

Genelde 200 °C veya daha fazla sıcaklıklarda şekeli-tilen Cds filmler, sütunlu bir yapıdadır ve 3-5 \(\mu \)m lik tanecik büyüklüklerine sahip olup bu tanecikler oldukça düzgün bir şekilde yönelmiştir. Alttabaka yakınındaki
CİZELGE 4.1
çeşitli yöntemlerle hazırlanmış ince film $\text{Cu}_2\text{S}/\text{Zn}_x\text{Cd}_{1-x}\text{S}$ güneş pili hücrelerin karakteristikleri

<table>
<thead>
<tr>
<th>Hücre Konfigürasyonu</th>
<th>Çekitme Yöntemi</th>
<th>Alan (cm²)</th>
<th>Işına Sıddeti (mW/cm²)</th>
<th>FF</th>
<th>V$_{oc}$ (volt)</th>
<th>I$_{sc}$ (mA/cm²)</th>
<th>Verim (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Cu2/n-Zn${0,16}$Cd$_{0,84}$S</td>
<td>Chem/Evap,</td>
<td>0,98</td>
<td>81,2</td>
<td>0,748</td>
<td>0,599</td>
<td>18,5</td>
<td>10,2</td>
</tr>
<tr>
<td>p-Cu2/n-Zn${0,1}$Cd$_{0,9}$S</td>
<td>Chem/Evap,</td>
<td>0,98</td>
<td>82,1</td>
<td>0,697</td>
<td>0,561</td>
<td>21,2</td>
<td>10,1</td>
</tr>
<tr>
<td>p-Cu$_2$/n-Cds</td>
<td>Chem/Evap,</td>
<td>0,864</td>
<td>87,5</td>
<td>0,714</td>
<td>0,516</td>
<td>21,8</td>
<td>9,5</td>
</tr>
<tr>
<td>p-Cu$_2$/n-Cds</td>
<td>Dry/Evap,</td>
<td>1,00</td>
<td>100</td>
<td>0,670</td>
<td>0,540</td>
<td>19,0</td>
<td>6,5</td>
</tr>
<tr>
<td>p-Cu$_2$/p-Cds</td>
<td>Dry/Evap,</td>
<td>1,00</td>
<td>100</td>
<td>0,600</td>
<td>0,470</td>
<td>37,1</td>
<td>10,4</td>
</tr>
<tr>
<td>p-Cu2/n-Zn${0,11}$Cd$_{0,89}$S</td>
<td>Chem/Sp,</td>
<td>1,00</td>
<td>100</td>
<td>0,650</td>
<td>0,430</td>
<td>19,0</td>
<td>5,6</td>
</tr>
<tr>
<td>p-Cu$_2$/p-Cds</td>
<td>Sp./Sp,</td>
<td>2,4</td>
<td>107</td>
<td>0,410</td>
<td>0,430</td>
<td>3,4</td>
<td>0,58</td>
</tr>
<tr>
<td>p-Cu$_2$/p-Cds</td>
<td>Chem/Sp</td>
<td>1,00</td>
<td>100</td>
<td>0,560</td>
<td>0,425</td>
<td>19,0</td>
<td>4,5</td>
</tr>
<tr>
<td>p-Cu$_2$/p-Cds</td>
<td>Dry/Sp,</td>
<td>AM1</td>
<td>0,430</td>
<td>0,400</td>
<td>6,9</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>p-Cu$_2$/n-Cds</td>
<td>Chem/Evap,</td>
<td>1,7</td>
<td>AM1</td>
<td>0,634</td>
<td>0,480</td>
<td>17,1</td>
<td>5,2</td>
</tr>
</tbody>
</table>

Çok kristalli CdS üzerine kimyasal kaplama ile oluşturulan Cu₂S tabakası düzlemsel yapıda değildir. Kimyasal kaplama işlemleri sırasında reaksiyon tanecik sınırlarının içerisinde doğru nüfüz eder ve bir takım düşey çıkıntılar oluşturur. Bu düşey çıkıntılar, Cu₂S nin toplam kültürlenin %20-%80 i arasında olup birkaç mikrometrelik uzunlukta olabilir. Şek.4.9 da, buharlaştırılan CdS filmin şekeltildikten sonraki (a), asitte dağılanma işleminden sonraki (b) yüzey topografileri ve dağılanan CdS üzerine oluşturulan Cu₂S yüzeyinin topografisi (c) görülmektedir.

Şekil 4.9 (a) Vakumda buharlaştırılan CdS filmin şekeltildikten sonraki, (b) Asitte dağılandırıldan sonraki yüzey topografisi. (a) 6 μm, (b) 6 μm ölçeklidir.
(c) CdS üzerine oluşturulan Cu$_2$S yüzey topografisi (2 μm).

Şekil 4.10 (a) Spray edilmiş saf CdS in, (b) Al-katlı CdS in yüzey topografileri (SEM). (a) 2 μm ve (b) 6 μm ölçeklidir.

Spray edilen CdS filmlerin kимyasal kaplanması ile hazırlanan Cu$_2$S tabakasını, üç boyutlu bir ağ yapısı gösterir. Al katkılı CdS filmler, daha yoğun olup yapılardaki Al$_2$O$_3$ varlığından dolayı -saf CdS filmlerin karakteristik bir özelliği olan kusur ve boşluklar içermez.

Sputtering yöntemi ile hazırlanan CdS filmler, çok küçük kalınlaklarda bile, buharlaştırılan hücrelerden daha koherenttir. Sputtering işlemi ayrıca, yönelimi iyi hücreler oluşturur.

4.2.3. Fotovoltaik Özellikler:

Bu hücrelerin açık devre gerilimi ve dolu faktörleri, ışıklı oluşan akım yoğunluğundan çok, ışık kaynağıının spektral içeriğine bağlıdır. Hücrenin aydınlatılması durumunda hücre sığasını önemli ölçüde (100 çarpanı kadar) artış gösterir. Hücrenin spektral tepkisi ise, besleme ışığının siddetine ve aynı zamanda spektral bileşimine bağlıdır.
Şekil 4.11 Cu₂S/CdS hücrelerin aydınlık ve karanlık I-V karakteristik egrilerinin çakışması ve bu karakteristiklerin, ışınının spektral dağılımına bağlılığı.

Örgü uyuşmazlığından dolayı (CuₓS ile CdS arasında yaklaşık %4 lük örgü uyuşmazlığı vardır) Cu₂S/CdS arayüzeyindeki yasaklanmış band aralığından, çok sayıda izinili durum oluşabilir. Bu izinili durumlar, yenidenbirleşme merkezleri olarak davranır. Bununla birlikte, bu yeni-

Akım-gerilim karakteristik eğrileri, gelen ışığın spektral dağılımına bağlıdır. Işıkla oluşan akım ve açık devre gerilimi aynı kalmakla birlikte, kısa devre akımı ve dolum faktörü değerleri, mavi dalgaboynu yaygın ışığa göre kırmızı dalgaboynu ışık için daha düşktür.

Kımyasal Kaplanmış Cu₂S/ buharlaştırılmış ZnₓCd₁₋ₓS ve yansımayı önleyici şekilde kaplanmış (anti-reflecting) ince film hücresleri, şimdiye kadar kaydedilmiş en yüksek verimli ince film yapıtıdır. Fotovoltaik parametreler: Verim:% 10.2, Voc:0.599 V, Isc:18.5 mA/cm², FF:0.748. Bu hücresler için hücre alanı 0.98 cm² ve ısıma şiddeti 81.2 mW/cm² dir. Zn konsantrasyonu: x =0.16 dir. Bu konsantrasyon değerleri arttırlarak dönüşüm verimlerinin %15'e kadar ulaştırılması amaçlanmaktadır.

Hazırlama tekniklerinin hücre verimi ve çıkış parametreleri üzerinde etkileri olabilir. Örneğin, spray yöntemleri ile hazırlanan Cu₂S/ZnₓCd₁₋ₓS ince film yapıları, buharlaştırma ile hazırlanan aynı tip ince film yapılarından genellikle daha düşük verimlere sahiptir. Bunun esas nedeni, bu tip hücreslerin, düşük açık devre gerilim değerleri (0.37-0.45 V), yüksek seri direnç ve düşük dolum faktörü değerleri göstermesidir. Spray yöntemleri ile elde edilen hücreslerin ancak %7-%8 lik verimler sağladığı açıklanmaktadır. Benzer şekilde, sputtering yöntemi ile hazırlanan hücresler de oldukça düşük dönüşüm verimleri gösterirler.

Şek. 4.12 de, Cu₂S/ZnCdS ve Cu₂S/CdS, kımyasal kaplanmış ve buharlaştırılmış hücreslerin I-V eğrileri görülebilir.

4.2.4. CuₓS/CdS Hücrelerin Kararlılığı:

Genelede, bir hücre çıkısunun azalmasını (yani bozulmanın), artan sıcaklıklarda, yük altında, nemli ve oksitleyici ortamlarda çok daha hızlı şekilde gerçekleştiği kabul edilir (Castel ve Soubeyrand, 1981). Çıkıstaki azalma, Cu₂S içerisindeki yüksek iyonik mobiliteten dolaYı hizlanmaktadır. Burada üç olası durumda bozulma kısaca
ele alınacaktır. Bunların ikisi, CuₓS tabakasının stokiyometrisi ile ilgilidir.

1) CuₓS nin Atmosferik Ayrışması:
CuₓS'ın atmosferik etkileşerek, CuO, Cu₂O ve CuCO₃ şeklinde ürünler halinde ayrışまま, yapının x değerini düşürecek ve eğer yeterli miktarda Cu kaybi oluşmuş ise, güneş enerjisinin dönüştürme verimi açısından yararız fazların ortaya çıkmasına yol açacaktır. Örneğin, x in 1.8 değeriine düşmesi Digenite fazının oluşmasına neden olur ki bu, verim açısından en yararız faz durumundadır. Baron ve arkadaşları (1978), sadece iki monotabaka Cu₂O oluşmasının bile, 0.4 μm kalınlıktaki bir CuₓS filminde x değerini, 2.000 den 1.995 değerine indirmeye yeterli olacağını açıklamasılardır. Sevindirici durum, oksit büyümesinin kendini sınırlayıcı özellikte olmasıdır. Plurio ve arkadaşları (1981), CuₓS nin atmosferik oksitlenmesi için Cd eklenmesi görüşünü ileri sürmüşlerdir. Ayrıca, ince bir Cu tabakasının oluşturulması ve bir dizi isısal işlem, CuₓS/CdS hücrelerin kararlılığını önemli ölçüde arttırmaktadır (Bogus ve Matter, 1972). optimum stokiyometriye sahip hücreler, bozumaya diğer hücrelerden daha dirençli durumdadır.

2) CuₓS nin Elektrolitik Bozulması:
3) Cu in CdS İçerisine Diffüzyonu:

4.2.5. Cu_x S/CdS Hücrelerinin Üstünlük ve Eksiklikleri

Cu_x S/CdS hücrelerinin en önemli üstünlüğü, çok farklı malzemeler üzerinde kolaylıkla üretilebilmeleri ve hücre maliyetinin düşük olmasıdır.

Bu tip hücrelerin en büyük eksiklikleri ise, düşük verimli oluşları ve Si hücrelerin sahip olduğu doğal kararlılığa sahip olmamalarıdır. Verimin düşük olması, sistem de maliyetini daha önemli duruma getirmektedir. Bu durumda, istenilen bir çıkışı elde etmek için gerekli pil alan maliyeti artmaktadır. Fotovoltaik güç üretiminde geniş amaçlı kullanımlar için gerekli minimum verim değeri, modül başına %10 dur.

Aynı tartışma hücrelerin kaplama maliyetleri için de geçerlidir. Bu tip hücreler, diğer hücrelerden doğal olarak daha kararlı olduklarından, eğer uzun süre çalışılmasını isteniyorsa, çok daha hassas kaplama işlemelerine tutulmaları gerekmektedir.

CdS hücrelerde gözlenen bozulma durumları; (a) yüksek nemlilikte, (b) yüksek sıcaklıklarda (>60 °C) ve (c) yükleme geriliminin 0.33 V u aşması halinde ortaya çıkmaktadır.
Hücrenin soğurduğu nem, ek tuzak durumları oluşturan kısaca devre akımını azaltma eğilimi gösterir. Bu, ter-
sinir bir işlem olduğundan, eğer hücre uygun ısısal iş-
lemlere tutulursa, başlangıçtaki akım seviyesi tekrar el-
de edilir. Eğer hücre, havada, 60 °C in üzerine kadar
ısınırsa, oksijen ve nem ile reaksiyonlardan dolayı, Cu₅S
malzemesi, CuO ve Cu₂O biçiminde ayrılır. Havanın yoklu-
gunda bile bu sıcaklıklarla aydınlanma, hücre verimini
azaltabilmektedir. Bunun nedeni, ışıkta sızdı Cu₂S taba-
kada oluşan faz değişimidir. Bir miktar Cu₂S, x<2 olan
CuₓS fazlarına dönüşür. Stokiyometrideki bu değişim, ve-
rimi önemli ölçüde düşürür. Hücrenin 0,53 V u aşan geri-
limler altında çalıştırılması ise, ışıkta dolayı, Cu₂S
den CuS ve Cu şeklinde bir ayrışmaya neden olur. Cu, in-
ce lifler oluşturarak eklemi kısa devre yapar ve hücreyi
bozulmaya uğratır. Bu bozulma tipleri, gerek hücre üretim
yöntemlerinde gerekse kaplama tekniklerinde bir takım
düzencemeler ile minimuma indirilebilir. Bu konudaki ça-
lışmalar sürümdedir.
V. Cu₉S/CdS GÜNEŞ PİLLERİNDE VERİM HESABI

5.1. GÜNEŞ PİLLERİNDE I-V KARAKTERİSTİKLERİNIN TAYINI

Ölçümler, ya doğal güneş ışığında yada güneş ışımına denk ışınma veren güneş simülatörleri ile yapılabilir. Yerel ölçümlerde kullanılan simülatörler için önerilen ışınma kaynakları:

a) Dichroic, süzgeçli ELH tipi tungsten lamba,
b) Kısa arıklı Xenon lamba veya
c) Uzun arıklı Xenon lamba.

Bu üç kaynağından spektrumu güneşsinkine oldukça yakındır. Güneş simülatörleri en az 1000 W/m² lik ışınma sağla-
malıdır. Işıma düzeyindeki kararlılık ise, ölçüm boyunca %2 sınırını aşamamalıdır. Ayrıca hücresin herhangi bir noktasına gelen demet açısı 30° nin altında düşmemelidir.

![Bağlı Şiddet](image)

- : Güneş Spektrumu
- : Xenon Lamba
- : ELH Tipi Lamba

Dalgaboyu (µm)

Şekil 5.1 Farklı ışıma kaynaklarının spektral dağılımları.

Doğal güneş ışığında ölçüm yapılırken izlenen yöntem şu şekilde özetlenebilir:

Güneş simülatörleri ile yapılan ölçümlerde, ilk önce ışık kaynağı açılır ve kararlı duruma getirilir. Işık kaynağının şiddeti, 28±2 °C de tutulan referans hücre üzerinde 1000 W/m² olarak ayarlanır. Daha sonra, aygıtın kalibre edilen bu değeri sabit tutularak test hücresi
yerleştirilir. Kontrol ve ayarlamalar tamamlandktan sonra, çeşitli ölçüm aytıtları kullanılarak hücrenin akım ve gerilim değerleri kaydedilir. Test hücrenin istenilen sıcaklıkta tutulmasını sağlamak amacıyla bu hücreler sıcaklık kontrollü bir blok üzerine monte edilir.

Bir güneş pilinin akım-gerilim eğrisinin elde edilmesinde kullanılan genel aytıtlar ise şunlardır:

1) Sabit Yük Dirençleri

Bu dirençler, I-V eğrisi üzerinde sadece belirli noktaların elde edilmesini sağlarlar. Kısa devre akımı kaydedilirken hücre üzerindeki gerilim düşmesi 20 mV u aşmamalıdır ve açık devre gerilimi, iç direnci en az 20 kohm/V olan bir voltmetre ile ölçülmelidir.

2) Değişken Güç Kaynağı

3) Mikroişlem Veri Sistemi

5.2. I-V KARAKTERİSTİKLERİNDEN VERİM HESABI

Bir güneş pili hücrenin karakteristik I-V eğrisi, hücre veriminin bulunmasında oldukça yararlıdır. Bu eğrilden yararlanarak hücrenin açık devre gerilimi ve kısa devre akımı olarak tanımlanan çıkış parametreleri belirlenebilmektedir.

Bir güneş pilinin açık devre gerilimi, hücreden geçen akıının sıfır olması durumunda hücre uçlarından ölçülen gerilimdir. Hücrenin kısa devre akımı ise, sıfır besleme geriliminde ve aydınlanma altında hücreden geçen akımdır ve seri direnç etkilerinin ihmal edildiği ideal durumda ışıkla oluşan akıma eşit olup ışına şiddetine bağlıdır.

I-V eğrisi üzerindeki değişik noktalarında IV çarpımlarının hesaplanması ve bu çarpının maksimum olduğu noktasının belirlenmesiyle, maksimum güç noktası (Pm) bulunmuş olur. Bu noktasının, akım-gerilim eksenleri üzerindeki izdüşüm değerleri ise sırasıyla hücrenin maksimum akım (Im) ve maksimum gerilim (Vm) değerleri olarak bilinir. Şek. 5.2 de bir hücrenin I-V eğrisi ile bu eğrinden elde edilebilecek parametreler görülmektedir.

\[ff = \frac{Pm}{VocIsc} \]

Şekil 5.2 Bir güneş pilinin karakteristik I-V eğrisi.
Bu durumda hücreden elde edilebilecek maksimum güç $P_m = V_{mIm}$ bağıntısından bulunabilir. Açık devre gerilimi ile kısa devre akımı, deneysel olarak ölçülebilen nicelikler olduğundan maksimum güç bu niceliklere bağlı olarak ifade etmek yararlı olabilir. Bu amaçla, "Dolum Faktörü-FF" adı verilen bir nicelik ortaya atılmıştır:

$$FF = \frac{V_{mIm}}{V_{ocIsc}}$$

Hücrenin $I-V$ eğrisinin karellığının bir ölçüsü olan dolum faktörü, hücrenin temel parametrelerinden olup ide-alde sadece açık devre geriliminin fonksiyonudur ve aşa-gıdaki ampirik bağıntılı ile tanımlanabilir:

$$FF = \frac{Voc' - \ln(Voc' + 0.72)}{Voc' + 1}$$

Buradaki $Voc' = Voc/(kT/q)$ dur. kT/q ise termal gerilim olarak bilinir ve 0.0259 V değerindedir.

Dolum faktörü, açık devre gerilimi, kısa devre akımı ve hücre üzerine gelen işıma bilindığınde, hücrenin, üzerine düşen işığı elektrik enerjisine dönüştürme verimi bulunabilir.

$$Dönüştürme Verimi (\eta) = \frac{Hücreden Sağlanan Maksimum Güç}{Hücreye gelen Maksimum Güç}$$

şeklinde tanımlanan verim, bilinen parametrelerle bağlı olarak:

$$\eta = \frac{P_m}{P_{in}} = \frac{V_{mIm}}{P_{in}}$$

veya ölçülebilen niceliklere bağlı olarak:

$$\eta = \frac{(VocIsc) FF}{P_{in}} \times 100 \%$$

Burada P_{in}, hücre üzerine gelen işıma şiddetiştir.
5.3. Cu$_x$S/CdS HÜCRENİN VERİMİNİN HESAPLANMASI

Bilindiği gibi bir güneş pilinin verimi, hücrenin açık devre gerilimine, kısa devre akımına ve hücre üzerine gelen ışıma şiddetine bağlıdır. Herhangi bir hücre için gelen ışıma şiddeti değişikçe hücrenin çıkışı parametrelerinde de değişmeler gözlenmektedir. Bir başka deyişle, açık devre gerilimi ve kısa devre akısı, hücre üzerine gelen ışıma şiddetine bağlılık gösterir. Genel olarak, bir Cu$_x$S/CdS hücresinde, ışıkla oluşan akım (seri direnç etkileri ihmal edildiğinde bu, kısa devre akımına eşittir) ışıma şiddetine doğrusal bağlılık iken, hücrenin açık devre gerilimi için logaritmik bir bağlılık söz konusudur. Şek. 5.3 te, bir Cu$_x$S/CdS hücresinde ışıkla oluşan akımın ışıma şiddetine bağlılığı görülmektedir. Şek. 5.4 te ise, farklı yöntemlerle hazırlanın hücreler için açık devre geriliminin ışıma şiddetine bağlılığı verilmektedir.

![İşle Işıma Şiddetinin Bağlantısı](chart.png)

Şekil 5.3 Bir Cu$_x$S/CdS yapıda, ışıkla oluşan akımın ışıma şiddetine bağlılığı.
Şekil 5.4 Değişik yöntemlerle hazırlanan CdS yapılar için açık devre geriliminin ışına şiddetine bağlılığı.

Bir güneş pilinin veriminin bulunması, o yapida-
kı çeşitli etkilerden kaynaklanan kayıp mekanizmalarının
göz önünde bulundurulması gerekir. Bir hücrenin temel ka-
yıp mekanizmaları: (a) Foton kayıpları, (b) Taşyıcı ka-
yıpları, (c) Gerilim kayıpları ve (d) Güç kayıpları ola-
rok sınıflandırlabilir. Bu kayıp mekanizmalarından her-
birisi, çıkış parametrelerini (özellikle kısa devre akı-
mini) etkilemekle, dolayısıyla yapının dönüştürme verimi-
ni önemli ölçüde düşürmektedir. Cu_xS/CdS hücrelerde etkin
kayıp mekanizmaları ve bunların kısa devre akımına bağlı
dakıları, Rothwarf tarafından geliştirilen modele dayalı
olarak şu şekilde belirlenmiştir: Soğurma/yansıma kayıp-
ları (%5-8), Grid gülgelemesinden oluşan kayıplar (%5-10),
Yüzey yenidenbirlleşe kayıpları (%1-2), Yapı içerisinde
yenidenbirlleşme kayıpları (%10-15), Arayüzey yenidenbi-
leşe kayıpları (%5), Tanecik sınırlarında yenidenbirlleşme
kayıpları (%1) ve CdS içerisinde ışık kayıpları (%2).
Bu bağlan kayıp oranlarına göre, kısa devre akımında toplam olarak %25-40 arasında bir kayıp söz konusudur. Ayrıca, Cu\textsubscript{x}S/CdS yapılarada, serisi direnç etkilerinden dolayı hem kısa devre akımında hem de dolum faktöründe bir azalma oluşmaktadır.

5.3.1. AMAC

Çalışmada, kaydedilen en yüksek verime sahip olan ince film güneş pili yapılarından, kimyasal kaplanmış Cu\textsubscript{2}S/buharlaştırılmış Zn\textsubscript{x}Cd\textsubscript{1-x}S, AR (Anti-Reflecting Yansımayı önleyici şekilde) kaplanmış hücreler için çıkış parametrelerinin işıma şiddetine bağlı olarak değişimi incelenmekte, ayrıca bu yapılar için verim hesabı yapılmaktadır. Bu amaçla, Konya Meteoroloji Bölge Müdürlüğünden aylık ortalama güneş işıma şiddeti değerleri alınmış olup EK A da tablo halinde verilmiştir. Çalışma teorik nitelikte olup işıma şiddeti dışında tüm değerler, grafiksel hesaplama olara ampirik bağıntılar sonucu elde edilmiştir.

5.3.2. YÖNTEM

İnce film Cu\textsubscript{x}S/CdS yapılarada, gelen işıma şiddetine bağlı olarak çıkış parametrelerinin nasıl değiştiğini den Kesim 5.3 te söz edilmiştir. Bu yapılarla Zn eklenmesinin verimi önemli ölçüde arttırdığı ise deneySEL sonuçlara kanıtlanmıştır. Incelenen Cu\textsubscript{2}S/Zn\textsubscript{x}Cd\textsubscript{1-x}S (x=0.15) yapılarının I-V karakteristik eğrisi, Şek. 4.12 de verilmiştir. Bu eğri, 0.98 cm2 alanlı hücrelerden elde edilmiş olup, hücre üzerine gelen işıma şiddeti 81.2 mW/cm2 ve sağlanan verim %10.2 dir.

Bu tip (Cu\textsubscript{2}S/CdS) yapılarada, ışıkla oluşan akım gelen işıma şiddetine bağlı olan çalışmanın doğruluğunun doğruluğun doğru bilinmektedir (Şek. 5.3). Yani, gelen işıma şiddetine belirli miktardaki her artmaya, I\textsubscript{L} de aynı oranda bir artma karşılık gelmektedir. Bu konudaki ilk çalışma,

\[\text{İₐ} \approx \text{İₐ} \text{sc} \ (\text{mA/cm}^2) \]

Şekil 5.5 CuₓS/ZnₓCd₁₋ₓS hücresi için kısa devre akımının isına şiddetine bağlılığı.
Bu grafiksel ilişkinin yararlanarak, aylık ortalama şiddetleri gösteren her işlemde değeri için yapıda oluşacak $I_L (\approx I_{SC})$ akımı belirlenmiştir.

Güneş pili yapılarında açık devre gerilimi, yapıda ışıkla oluşan akımı logaritmik olarak bağlandır. Bu bağımlılık genelde,

$$V_{OC} = (kT/q)\ln((I_L/I_O)+1)$$

şeklindedir. Burada, I_O, bir diyod parametresi olup, ince film Cu$_2$S/CdS yapılar için 8×10^{-8} mA/cm2 değerini almaktadır. kT/q ise ışısalsal gerilimdir ve 0.0259 V değerindedir. Bu ampirik bağıntı yardımı ile, her I_L akım değeri için açık devre gerilimi hesaplanmıştır.

Güneş pillerinde bir diğer önemli parametre ise dolum faktörüdür. Bu faktör idealde sadece V_{OC} gerilimine bağlıdır:

$$ff = \frac{Voc' - \ln(Voc' + 0.72)}{Voc' + 1}$$

Bu bağıntı kullanılarak, her I_L (dolayısıyla V_{OC}) değeri için ff faktörü hesaplanmıştır. Burada, $Voc' = V_{OC}/(kT/q)$.

Verim, hücreden sağlanan maksimum gücün hücre üzerine gelen güce (yani işlem şiddetine) oranı olarak tanımlanmadan, P_{in} hücreye gelen işima şiddeti olmak üzere:

$$\text{Verim} = \frac{V_{OC} I_{SC} ff}{P_{in}} \times 100 \, (\%)$$

yazılabilir. Böylece, her işlem şiddeti için bulunan V_{OC}, I_{SC} ve ff parametreleri yukarıdaki bağıntıda kullanılanlarak dönüştürme verimleri hesaplanmıştır.
5.3.3. SONUÇLAR

<table>
<thead>
<tr>
<th>AYLAR</th>
<th>ISIMA ŞIDDETİ (mW/cm²)</th>
<th>I_L - I_sc (mA/cm²)</th>
<th>V_oc (Volt)</th>
<th>FF</th>
<th>Verim (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCAK</td>
<td>18.79</td>
<td>4.28</td>
<td>0.460</td>
<td>0.791</td>
<td>8.29</td>
</tr>
<tr>
<td>ŞUBAT</td>
<td>23.66</td>
<td>5.39</td>
<td>0.466</td>
<td>0.793</td>
<td>8.42</td>
</tr>
<tr>
<td>MART</td>
<td>29.92</td>
<td>6.82</td>
<td>0.472</td>
<td>0.794</td>
<td>8.54</td>
</tr>
<tr>
<td>NİSAN</td>
<td>36.19</td>
<td>8.24</td>
<td>0.477</td>
<td>0.796</td>
<td>8.65</td>
</tr>
<tr>
<td>MAYIS</td>
<td>38.28</td>
<td>8.72</td>
<td>0.479</td>
<td>0.797</td>
<td>8.70</td>
</tr>
<tr>
<td>HAZİRAN</td>
<td>38.97</td>
<td>8.88</td>
<td>0.479</td>
<td>0.797</td>
<td>8.70</td>
</tr>
<tr>
<td>TEMMUZ</td>
<td>40.36</td>
<td>9.20</td>
<td>0.480</td>
<td>0.797</td>
<td>8.72</td>
</tr>
<tr>
<td>AĞUSTOS</td>
<td>41.06</td>
<td>9.35</td>
<td>0.481</td>
<td>0.797</td>
<td>8.74</td>
</tr>
<tr>
<td>EYLÜL</td>
<td>34.80</td>
<td>7.92</td>
<td>0.476</td>
<td>0.796</td>
<td>8.63</td>
</tr>
<tr>
<td>EKİM</td>
<td>27.14</td>
<td>6.18</td>
<td>0.470</td>
<td>0.794</td>
<td>8.50</td>
</tr>
<tr>
<td>KASIM</td>
<td>20.18</td>
<td>4.59</td>
<td>0.462</td>
<td>0.791</td>
<td>8.33</td>
</tr>
<tr>
<td>ARALIK</td>
<td>15.31</td>
<td>3.49</td>
<td>0.455</td>
<td>0.789</td>
<td>8.18</td>
</tr>
<tr>
<td>YILLIK</td>
<td>30.70</td>
<td>7.00</td>
<td>0.473</td>
<td>0.795</td>
<td>8.57</td>
</tr>
</tbody>
</table>
KAYNAKLAR

ÖZGEÇMİS

Haluk ŞAFAK
KONYA BÖLGESİ İÇİN GÜNEŞ IŞIMA ŞIDDETLERİ

Aşağıdaki çizelgede, 3 yıllık rasat süresinde ölçülen güneş ışına şiddetinin aylık ortalama değerlerini görülmektedir. Ölçülen değerler cal/cm² dak. biriminde olup, verim hesaplamalarında kolaylık olması açısından mW/cm² birimine dönüştürülmuştur. Çizelgede ayrıca, aylık en yüksek ışına şiddet değeri ile yıllık ortalama ışına şiddetinin de belirtilmiştir.

I. Güneş ışına şiddetinin aylık ort. (cal/cm² dak.)
II. Günlük kalori toplamının aylık ort. (cal/cm² dak.)
III. Güneş ışına şiddetinin aylık ort. (mW/cm²)
IV. Güneş ışına şiddetinin aylık en yüksek değeri (cal/cm² dak.)

<table>
<thead>
<tr>
<th>AYLAR</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocak</td>
<td>0.27</td>
<td>161.83</td>
<td>18.79</td>
<td>1.26</td>
</tr>
<tr>
<td>Şubat</td>
<td>0.34</td>
<td>222.81</td>
<td>23.66</td>
<td>1.24</td>
</tr>
<tr>
<td>Mart</td>
<td>0.43</td>
<td>307.44</td>
<td>29.92</td>
<td>1.44</td>
</tr>
<tr>
<td>Nisan</td>
<td>0.52</td>
<td>407.53</td>
<td>36.19</td>
<td>1.54</td>
</tr>
<tr>
<td>Mayıs</td>
<td>0.55</td>
<td>466.34</td>
<td>38.28</td>
<td>1.50</td>
</tr>
<tr>
<td>Haziran</td>
<td>0.56</td>
<td>498.54</td>
<td>38.97</td>
<td>1.49</td>
</tr>
<tr>
<td>Temmuz</td>
<td>0.58</td>
<td>505.83</td>
<td>40.36</td>
<td>1.50</td>
</tr>
<tr>
<td>Ağustos</td>
<td>0.59</td>
<td>490.83</td>
<td>41.06</td>
<td>1.48</td>
</tr>
<tr>
<td>Eylül</td>
<td>0.50</td>
<td>375.04</td>
<td>34.80</td>
<td>1.36</td>
</tr>
<tr>
<td>Ekim</td>
<td>0.39</td>
<td>249.60</td>
<td>27.14</td>
<td>1.24</td>
</tr>
<tr>
<td>Kasım</td>
<td>0.29</td>
<td>182.20</td>
<td>20.18</td>
<td>1.04</td>
</tr>
<tr>
<td>Aralık</td>
<td>0.22</td>
<td>127.71</td>
<td>15.31</td>
<td>0.94</td>
</tr>
<tr>
<td>Yıllık</td>
<td>0.44</td>
<td>334.22</td>
<td>30.70</td>
<td>1.54</td>
</tr>
</tbody>
</table>