STURM - LIOUVILLE PROBLEMLERİNİN ÖZDEĞERLERİNLİN VE SIFIRLARININ SAYISININ ASİMTOTLARI

T. C.
Yüksekokşretim Kurulu
Dokümantasyon Merkezi

(Yüksek Lisans Tezi)

Hazırlayan
Ahmet ÇİHANGİR

Danışman
Doçent. Ahmet Hikmet BERKSOY

KONYA — 1990
İÇİNDEKİLER

ÖNSÖZ

NOTASYONLAR

I. BÖLÜM

ÖN BİLGİLER

1.1. Temel Kavramlar 1

II. BÖLÜM

STURM - LIOUVILLE SİSTEMLERİ

2.1. Sturm - Liouville Sistemleri 13
2.2. Sturm - Liouville Serileri 15
2.3. Fiziksel Anımlarları 19
2.4. Özel Sistemler 22
2.5. Prüfer Dönüşümü 26
2.6. Sturm- Karşılaştırma Teoremi 29
2.7. Salınım Teoremi 31
2.8. Özfonksiyonların Dizisi 36
2.9. Liouville Normal Form 38
2.10. Modified Prüfer Dönüşümü 41
2.11. Özdeğerlerin Dağılımı 45
2.12. Özfonksiyonların Normalleştirilmesi 48

III. BÖLÜM

GENEL AĞIRLIKLı STURM-LIOUVILLE PROBLEMLERİNİN
ÖZDEĞERLERİNİN VE S(IFIRLARININ SAYISININ ASİMPOTTLARI

3.1. Giriş 53
3.2. (3.1) İçin N(λ) -nin Asimptotları 55
3.4. (3.50) İçin N(λ) -nin Asimptotları 66
ÖZET 72
SUMMARY 72
KAYNAKLAR
ÖNSÖZ

Bu çalışmamda danışmanlığımı üstlenen değerli hocam Sayın Doç.Dr. Ahmet Hilmi BERKSOY'a; çalışmalarım esnasında yardımcıları esirgemeyen kıymetli hocam sayın Prof. Dr. Ali SİNAN'a, sayın Yrd. Doç. Dr. Ahmet Zempo ÖZÇELİK'e teşekkür eder saygılara sunarım.

Ahmet CIHANGİR
NOTASYONLAR

\text{sup} : Supremum, en küçük üst sınır
\text{inf} : Infimum, en büyük alt sınır
\|x\| : x'in normu
|x| : x'in mutlak değeri
\sim : denk, eş
D : \frac{d}{dx} operatörü
\Sigma : Toplam operatörü
C^n : n-inci türevе haiz sürekli fonksiyonlar uzayı
I. BÖLÜM
ÖN BİLGİLER

1.1. Temel Kavramlar

Bu bölüm ikinci ve üçüncü bölümde kullanılacak olan temel tanımlar ve teoremlerden oluşmaktadır. Yani bu bölümde diferensiyel denklemlerin çözümlerinin varlığı, tekiği ve Lipschitz şartı ile, süreklilik, karsılıştırma ve ayırma teoremleri verilmiştir.

Tanım 1.1. Bir D bölgesinde \(F(x,y) \) fonksiyonu verilsin. Bu bölgede apsisleri aynı olan \((x,y)\) ve \((x,z) \) nokta çiftleri için,

\[
|F(x,y) - F(x,z)| \leq L |y-z|
\]

(1.1)
esitsizliği sağlanacak biçimde bir \(L \) sabiti bulunabiliyor olursa, \(F(x,y) \) fonksiyonuna D bölgesinde Lipschitz şartını sağlıyor denir ve \(L \) ye de Lipschitz sabiti denir.

Teorem 1.1. \(F(x,y) \) fonksiyonu konveks-kapalı bir D bölgesinde süreklı ve türevlenebilir olsun. O zaman,

\[
L = \sup_D \left| \frac{\partial F}{\partial y} \right|
\]

ile \(F(x,y) \) fonksiyonu Lipschitz şartını sağlar.

İşpat: Verilen D bölgesi konveks olduğundan \((x,y)\) ile \((x,z)\)-in sınırladığı dikdörtgen bölgeyi kapsar. Bu bölgede \(y \) ile \(z \) arasındaki bazı \(\gamma \) -ler için \(\gamma \) -nün bir fonksiyonu olarak düşünülen \(F(x,\gamma) \) fonksiyonuna ortalama değer teoremi uygulanırsa,

\[
|F(x,y) - F(x,z)| = |y-z| \left| \frac{\partial F(x,\gamma)}{\partial y} \right|
\]
elde edilir. (1.1) esitsizliğinden dolayı, \(\sup_D \left| \frac{\partial F}{\partial y} \right| = L \) dersek o zaman,
\[|F(x,y) - F(x,z)| \leq |y-z| L \]

olur ki bu ise Lipschitz şartının \(y \)-ye göre sağlanması demektir.

Teorema 1.2. \(K \) bir sabit ve \(C \) türevlenebilen bir fonksiyon olmak üzere,

\[C'(x) \leq K C(x), \quad a \leq x \leq b \tag{1.2} \]

eşitsizliği sağlanır. \(0 \) zaman \(a \leq x \leq b \) için \(C'(x) \) fonksiyonu,

\[C'(x) \leq C(a) e^{K(x-a)} \tag{1.3} \]

eşitsizliğini sağlar.

İşpat: (1.2) ifadesinin her iki yamını \(e^{-Kx} \) ile çarpar ve gerekli düzenlemeyi yaparsak,

\[0 \geq e^{-Kx} \left[C'(x) - K C(x) \right] = \frac{d}{dx} \left[C(x) e^{-Kx} \right] \]

olur ki pozitif olmayan bu ifade \(C(x) e^{-Kx} \) fonksiyonunun türevidir ve \(a \leq x \leq b \) aralığında artmaz. Bundan dolayı,

\[C(x) e^{-Kx} \leq C(a) e^{-Ka} \Rightarrow C(x) \leq C(a) e^{K(x-a)} \]

olur ve ispat biter.

Sonuç 1.2.1. Eğer yukarıdaki teoremden \(C(a) = 0 \) ve \(C(x) \geq 0 \) ise \(0 \) zaman \(C(x) \equiv 0 \) olur.

İşpat: Teorema 1.2. nin ispatından dolayı açıklar.

Teorema 1.3 (Teklik teoremi-1): Birinci mertebe \(y' = F(x,y) \) diferensiyel denkleminin düzlemsel bir bölgenin bir nokta-ından geçen ve (1.1) Lipschitz şartını sağlayan bir ve yalnız bir çözümü vardır.

İşpat: \(y = f(x) \) ve \(y = g(x) \) fonksiyonları \(f(a) = g(a) \) başlangıç şartını sağlayan, \(y' = F(x,y) \) diferensiyel denkleminin iki çözümü olsun. \(0 \) zaman aynı Lipschitz sabit için
\(f(x) \text{ ve } g(x) \text{-in temsil ettiği eğrilerin aynı olduğunu göstermeliyiz. Bunun için,} \)
\[
G(x) = [f(x) - g(x)]^2 \geq 0
\]

birciminde negatif olmayan bir \(G(x) \) fonksiyonu seçelim. Bu fonksiyonun türevini alırsak,
\[
G'(x) = 2[f(x) - g(x)][f'(x) - g'(x)]
= 2[f(x) - g(x)][F(x,f(x)) - F(x,g(x))]
\]
olar. Burada (1.1) Lipschitz şartı kullanılarrsa,
\[
G'(x) \leq 2|f(x) - g(x)||f'(x) - g'(x)| \leq 2L \, G(x)
\]
esitsizliği elde edilir. Hipotezden dolayı \(G(a) = 0 \) olur ve (1.3) eşitsizliğinden \(G(x) \) negatif olamaz. Buradan \(x > a \) için \(G(x) \equiv 0 \) bulunur. Benzer düşüncelyle \(x < a \) için \(x \) yerine \(t = 2a - x \) yazır ve \(t \)-ye göre türev alırsak,
\[
\frac{dG}{dt} = -\frac{dG}{dx} \leq 2L \, G(x)
\]
buluruz. Buradan da \(G(x) \equiv 0 \) bulunur ki bu ise \(f(x) \equiv g(x) \)
olması demektir. Aranan sonuç da budur.

Teorem 1.4 (Süreklik Teoremi): Verilen bir a noktasını ve \(c \) değişkeni için, \(\gamma = F(x,y) \) diferensiyel denkleminin \(f(a) = c \) başlangıç şartını sağlayan çözümü \(f(x,y) \) olsun. Sabit bir \(x \) noktasında \(f(x,c) \) belirli bir değer almaktan üzerine \(f(x,c) \), teorem 1.3. den dolayı \(c \)-ye bağlı olarak süreklidir.

İşpat: Teorem 1.3. ün ispatından \(\gamma'(x) \leq 2L \gamma(x) \) ve teorem 1.2. den dolayı \(\gamma(x) \leq \gamma(a)e^{2L|x-a|} \) dir. \(\gamma(x) \)-in tanımlandandan dolayı ifadenin her iki yanının karekökü alınırsa,
\[
|f(x) - g(x)| \leq e^{L|x-a|}|f(a) - g(a)| \tag{1.4}
\]
bulunur ki bu \(f(x,c) \)-nin sürekli olması demektir. Ayrıca
(1.4) ifadesi,

\[|f(x, c) - f(x, c_1)| \leq \exp(L|x-a|)|c-c_1| \]

biçiminde de yazılabilir.

Teorema 1.5 Fonksiyonu \(x > a \) için Lipschitz şartını sağlasın. Eğer \(f \) fonksiyonu \(x > a \) için \(f'(x) \leq F(x, f(x)) \) eşitsizliğini sağlayan ve \(g \) fonksiyonu \(f(a) = g(a) \) başlangıç şartını sağlamacak biçimde \(y' = F(x, y) \) diferensiyel denkleminin bir çözümü olsaydı, sadece \(y \geq a \) için \(f(x) \leq g(x) \) olur.

İşpat: Farzedelim ki verilen aralıkların bir \(x_1 \) için \(f(x_1) > g(x_1) \) olsun ve \(f(x) \leq g(x) \) olacak biçimde \(a \leq x \leq x_1 \) aralığında \(x \), \(x_0 \) olarak tanımlansın. Buradan \(f(x_0) = g(x_0) \) olur. \(\varphi(x) \) fonksiyonu \(\varphi(x) = f(x) - g(x) \) olarak tanımlanırsa \(x_0 \leq x \leq x_1 \) için \(\varphi(x) \geq 0 \) olur ve yine \(x_0 \leq x \leq x_1 \) için,

\[
\varphi'(x) = f'(x) - g'(x) \leq F(x, f(x)) - F(x, g(x)) = L(f(x) - g(x)) = L \varphi(x)
\]

bulunur. Burada \(L, f \) fonksiyonu için Lipschitz sabitidir. Yani \(x_0 \leq x \leq x_1 \) aralığında \(K = L \) için \(\varphi \) fonksiyonu teorem 2-nin hipotezini sağlar. Buradan \(\varphi(x) = g(x_0) e^{L(x-x_0)} = 0 \) olur. \(\varphi \) negatif olamayacağınından özdeş olarak sıfırdır. Fakat bu \(f(x_1) > g(x_1) \) kabulümülüze gelişir. Ö halde verilen aralıklar bir her \(x \) için \(f(x) \leq g(x) \) olur.

Teorema 1.6 (Karsılama Teoremi): Sırasıyla \(f \) ve \(g \) fonksiyonları \(f(a) = g(a) \) başlangıç şartını sağlamacak biçimde,

\[y' = F(x, y), \quad z' = G(x, z) \]

diferensiyel denklemlerinin çözümleri olarak verilsin.
 Ayrıca F yada G Lipschitz şartını sağlasın ve verilen bölgedeki her \(x, y \) için \(F(x, y) \leq G(x, y) \) olsun. \(0 \) zaman \(x > a \) için \(f(x) \leq g(x) \) olur.

İşpat: G Lipschitz şartını sağlasın, \(y' = F(x, y) \leq G(x, y) \) olduğundan \(F \) yerine \(G \) alındığında da \(f \) ve \(g \) fonksiyonları teorem 1.3. deki şartları sağlar. \(0 \) zaman \(x > a \) için \(f(x) \leq g(x) \) eşitsizliği sağlanır.

Eğer \(F \) Lipschitz şartını sağlıyorsa, \(0 \) zaman \(u = -f(x) \) ve \(v = -g(x) \) fonksiyonları \(u' = -F(x, u) \) ve \(v' = -G(x, -v) \leq -F(x, -u) \) diferensiyel denklemlerini sağlar. Şimdi \(u, v \) ve \(H(u, v) = -F(x, -v) \) fonksiyonlarına \(x > a \) için \(v(x) \leq u(x) \) veya \(g(x) \geq f(x) \) eşitsizlikleri geçerli olmak üzere teorem 1.3. ü uygularsak ispat biter.

Sonuç 1.2. Teorem 1.3. de \(y \) \(x > a \) için \(f(x) < g(x) \) olur, \(yada a \leq x \leq x_1 \) için \(f(x) = g(x) \) direkt.

İşpat: Karşılama teoremindeki \(f(x) \leq g(x) \) eşitsizliği çoğu kez tam bir eşitsizlikle değiştirilebilir.

\(f \) ve \(g \) \(a \leq x \leq x_1 \) için \(ya özdeş olarak eşittir, \(ya (a, x_1) \) aralığındaki diğer bir \(x_0 \) değerini için \(f(x_0) = g(x_0) \) olur.

Karşılama teoreminden dolayı \(\mathcal{Q}_1(x) = g(x) - f(x) \) ifadesi \(a \leq x \leq x_1 \) için negatif olamaz ve \(\mathcal{Q}_1(x_0) > 0 \) dir. Teorem 1.6. nin ispatında,

\[
\mathcal{Q}_1'(x) = G(x, g(x)) - F(x, f(x))
\]

\[
\geq G(x, g(x)) - G(x, f(x)) \geq -L \mathcal{Q}_1(x)
\]

olduğunun gösterilmiştir. Burada verilen \(e^{Lx} \mathcal{Q}(x) \) fonksiyonu \(a \leq x \leq x_1 \) aralığında azalmayan olduğundan

\[
[e^{Lx} \mathcal{Q}_1(x)]' = e^{Lx} [\mathcal{Q}_1' + L \mathcal{Q}_1] \geq 0
\]
olur. Sonuç olarak,
\[\varphi_1(x) \geq \varphi_1(x_0) e^{-(x-x_0)} \to 0 \]
eşitsizliği elde edilir.

Tanım 1.2. Verilen bir \(I \) aralığında \(P_i(x) \) fonksiyonları (\(i=0,1,2,3 \)) reel değerli ve sürekli olmak üzere,
\[P_0(x)\frac{d^2u}{dx^2} + P_1(x)\frac{du}{dx} + P_2(x)u = P_3(x) \quad (1.7) \]
diferensiyel denklemine, ikinci mertebe lineer diferensiyel denklem denir. Yukarıdaki \((1.7) \) diferensiyel denkleminde,
\[p = \frac{P_1}{P_0}, \quad q = \frac{P_2}{P_0}, \quad r = \frac{P_3}{P_0} \]
yazarsak,
\[\frac{d^2u}{dx^2} + p(x)\frac{du}{dx} + q(x)u = r(x) \quad (1.8) \]
bÜçümüne dönüştür.

Tanım 1.3. \((1.8) \) diferensiyel denkleminin \(p, q, r \) katsayları fonksiyonları \(x \)-ekseni üzerindeki bir \(I \) aralığında sürekli ise, o zaman \((1.8) \) diferensiyel denkleme I aralığında REGÜLER'dir denir. Ayrıca \((1.8) \) diferensiyel denkleminin \(u=f(x) \) gibi her hangi bir çözümü, iki kere türevlenebilir bir fonksiyondur. Yani \(u=f(x) \) fonksiyonu, \((1.8) \) diferensiyel denklemini I aralığının her noktasında sağlar.

Teorem 1.7 (teklik Teoremi-2): Eğer \((1.8) \) diferensiyel denkleminin \(p(x) \) ve \(q(x) \) katsayı fonksiyonları sürekli ise o zaman \(f(a)=c_0 \) ve \(f'(a)=c_1 \) başlangıç şartlarını sağlayacak biçimde \((1.8) \) diferensiyel denkleminin bir tek çözümü vardır.

İşpat: \((1.8) \) diferensiyel denkleminin her hangi iki çö-
zümü v ve w olsun. v - w = u farkı da r(x) = 0 olduğunda (1.8) diferensiyel denkleminin x = a için u = u' = 0 başlangıç şartını sağlayan bir çözümü olsun. Şimdi de negatif olmayan \(\phi(x) = u^2 + u'^2 \) fonksiyonunu düşünelim. \(\phi(0) = 0 \) olarak tanımlansın. \(r(x) \equiv 0 \) olduğundan türşünü alırsak,

\[
\phi'(x) = 2u'(u + u') = 2u'(u - p(x)u' - q(x)u) \\
= -2p(x)u'^2 + 2(1 - q(x))uu'
\]
buluruz. Mademki \((u \mp u')^2 \geq 0 \), \(|2uu'| \leq u^2 + u'^2 \) dir. o zaman burada, \(2(1 - q(x))uu' \leq (1 + |q(x)|)(u^2 + u'^2) \) olacak \(\phi''(x) \leq [1 + |q(x)|]u^2 + [1 + |q(x)| + |2p(x)|]u'^2 \) olur. Burada \([a, b]\) sonlu kapalı aralığında,

\[K = 1 + \max(|q(x)| + |2p(x)|) \]
değeri maksimum değeri olarak alınır ve \(r(x) \leq K \phi(x) \), \(K < \infty \) olur. Teorem 1.2'den dolayı \(a-\gamma \) kapsayan herhangi bir aralıktaki bütün x-ler için \(\phi(x) \equiv 0 \) olur. Böylece \(u = v - w \) ifadesi (1.8) diferensiyel denkleminin \(u \equiv 0 \) biçiminde bir çözümüdür. Buradan da \(v \equiv w \) bulunur.

Teorem 1.8, \(f \) ve \(g \) fonksiyonları,

\[
u'' + p(x)u' + q(x)u = 0 \ , \ p, q \in C \quad (1.9)
\]
için mertebe homojen lineer diferensiyel denkleminin iki çözümü olsun. Ayrıca bazı \(x = x_0 \) lar için \((f(x_0), f'(x_0)) \) ve \((g(x_0), g'(x_0)) \) lineer bağımsız vektörleri verilsin. \(0 \) zaman (1.9) diferensiyel denkleminin her çözümü, \(h(x) = cf(x) + dg(x) \) biçiminde \(f(x) \) ve \(g(x) \) -in Lineer bir kombinasyonudur. Burada verilen \(c \) ve \(d \) katsayıları keyfi sabitlerdir.

İşpat: \(h(x) \) fonksiyonu (1.9) diferensiyel denkleminin bir çözümü olsun. \(0 \) zaman verilen \(x_0 \) noktasında,
cf(x₀) + dg(x₀) = h(x₀), cf'(x₀) + dg'(x₀) = h'(x₀)
esitsizlikleri sağlanacak biçimde c, d sabitleri bulunabilir. Cramer Kuralından dolayı c ve d sabitleri,

c = (h₀g'₀ - g₀h'₀)/(f₀g'₀ - g₀f'₀), d = (f₀h'₀ - h₀f'₀)/(f₀g'₀ - g₀f'₀)
biriminde verilir. Yukarıdaki ifadelerde f₀ = f(x₀), f₀' = f'(x₀) biçiminde kısıtlamalar kullanıldı. Bundan dolayı c ve d sabitlerine bağlı olarak tanımlanan u(x) = h(x) - cf(x) - dg(x) fonksiyonu u(x₀) = u'(x₀) = 0 başlangıç şartları altında (1.9) homojen lineer diferensiyel denklemini sağlar. Teklik teoreminden dolayı, u(x) fonksiyonu, homojen lineer (1.9) diferensiyel denklemini ancak u(x) = 0 olması durumunda sağlar ki bu ise h(x) = cf(x) + dg(x) olması demektir. Böylece homojen lineer (1.9) diferensiyel denkleminin her bir çözümünün f ve g gibi iki fonksiyonun lineer kombinasyonu biçiminde verildiği gösterilmiş olur.

Teorem 1.9 (Sturm Ayırma Teoremi): Eğer f(x) ve g(x) fonksiyonları (1.9) diferensiyel denkleminin lineer bağımsız iki çözümü ise, o zaman f(x) - in bir sıfırı, g(x) - in ardışık iki sıfırı arasındadır, aynı şekilde g(x) - in bir sıfırı da f(x) - in ardışık iki sıfırı arasındadır. Yani f(x) ve g(x) in sıfırları ardışiktır.

İşpat: Eğer x = x₁ noktasında g(x) sıfır oluyorsa o zaman

W(f, g; x₁) = f(x₁)g'(x₁) ≠ 0

olur. Çünkü f ve g lineer bağımsızdır. Buradan g(x₁) = 0 için f(x₁) ≠ 0 ve g'(x₁) ≠ 0 olur. Eğer x₁ ve x₂ g(x) - in ardışık sıfırları ise, o zaman g'(x₁) ≠ g'(x₂), f(x₁) ve f(x₂) sıfırdan farklı olur. Ayrıca sıfırdan farklı olan g'(x₁) ve g'(x₂)
aynı işaretli olamaz. Eğer $g(x)$ fonksiyonu $x=x_1$ noktasında artıyorsa, $x=x_2$ noktasında azalmalıdır ve tersi de doğrudur. Yine $W(f,g;x)$ ifadesi daima bir tek işaret aldığından $f(x_1)$ ve $f(x_2)$-de zıt işaretli olmalıdır. Böylece x_1 ile x_2 noktaları arasındaki bir nktada $f(x)$ sıfıra eşit olmalıdır.

Örneğin, $u'' + k^2 u = 0$ trigonometrik diferensiyel denkleme yukarıdaki teorem uygulanırsa, bu denklemin çözümleri olan $\sin kx$ ve $\cos kx$'in sıfırlarının sıralı olduğu görülmür. Çünkü yalnızca bu fonksiyonlar aynı homojen lineer diferensiyel denkleme lineer bağımsız iki çözümüdür.

Teorem 1.10 (Sturm Karşılaştırma Teoremi): Sırasıyla $f(x)$ ve $g(x)$ fonksiyonları $u'' + p(x)u = 0$, $v'' + q(x)v = 0$ diferensiyel denklemlerinin trivial olmayan çözümleri ve $p(x) \geq q(x)$ olsun. O zaman $p(x) \equiv q(x)$ ve $f(x), g(x)$-in bir katı olmadığca $f(x)$-in en az bir sıfırı $g(x)$-in ardışık iki sıfırı arasındadır.

İşpat: $g(x)$-in ardışık iki sıfırı x_1 ve x_2 olarak verilsin. Lýle ki $g(x_1) = g(x_2) = 0$ olsun. $f(x)$ $x_1 < x < x_2$ aralığında sıfırm olmasına. Eğer f ve g yerine, onların negatif verilmesi gerekiyorsa, 0 zaman $x_1 < x < x_2$ aralığındaki f ve g çözümleri pozitif olarak bulunur. Böylece,

$$W(f,g;x_1) = f(x_1)g'(x_1) \geq 0$$

ve

$$W(f,g;x_2) = f(x_2)g'(x_2) \leq 0$$

olarak bulunacaktır. Öteyandan eğer $f > 0$, $g > 0$ ve $x_1 < x < x_2$ aralığında $p > q$ ise, 0 zaman $x_1 < x < x_2$ aralığı üzerinde,

$$\frac{d}{dx}[W(f,g;x)] = fg'' - gf'' = (p - q)fg \geq 0$$

-9-
olarak, Burada W azalmadığından,
\[p - q = W(f, g; x) \equiv 0 \]
durumu hariç olmak üzere, bu bir çelişkidir. Bu durumda bir k sabiti için \(f = kg \) olur ki ispat biter.

Sonuç 1.3. Eğer \(q(x) \leq 0 \) ise, o zaman \(u'' + q(x)u = 0 \) diferensiyel denkleminin nontrivial olmayan çözümünün birden fazla sıfırı bulunabilir.

İspat: Aksine ispat yöntemi kullanacağız. Sturm karşılaştırma teoreminden dolayı \(v'' = 0 \) diferensiyel denkleminin \(v \equiv 1 \) çözümünün en az bir sıfırı u'' + q(x)u = 0 diferensiyel denkleminin trivial olmayan herhangi bir çözümünün iki sıfırı arasında bulunmalıdır. Bundan evvelki sonuçlarda u'' + q(x)u = 0 diferensiyel denkleminin çözümlerinin salınımlarını q(x)-in büyüklüğü ve işaretine bağlı olarak belirledik. q(x) \leq 0 iken salınım imkansızdır. Çünkü çözüm olmadiğından q(x) değişik işaretler alabilir. Diğer taraftan q(x) > k^2 > 0 ise, o zaman \(\pi/2 \) uzunlukundaki bir aralığında u'' + q(x)u = 0 diferensiyel denkleminin bir çözümü, u'' + k^2u = 0 trigonometrik diferensiyel denkleminin bir Acos(k(x-x_1)) çözümünün iki ardışık sıfırı arasında sıfır olmalıdır.

Bu sonuç,
\[u'' + \frac{1}{x} u' + \left(1 - \frac{n^2}{x^2}\right)u = 0 \quad (1.10) \]
biçiminde verilen Bessel diferensiyel denkleminin çözümlerine uygulanabilir. (1.10) denkleminde \(u = \frac{v}{\sqrt{x}} \) dönüşümü yapılarak,
\[v'' + \left[1 - \frac{4n^2}{4x^2} - 1\right]v = 0 \quad (1.11) \]
denk diferensiyel denklemi elde edilir ki onun çözümleri u-nun verilisinden dolayı sıfırdır \((x \neq 0\ \text{için})\), \(u'' + u = 0\) ve (1.11) diferensiyel denklemlerine karşılaştırma teoreminin uygulanmasıyla aşağıdaki sonuç ispatlanmış olur.

Sonuç 1.4. Pozitif \(x\)-ekseninin \(\Pi\) uzunluğundaki herhangi bir aralığı sıfırlıncı mertebeden Bessel diferensiyel denkleminin bir çözümünün en az bir sıfırları içerir. Ayrıca eğer \(n > 1/2\) ise, aynı aralık \(n\)-inci mertebeden Bessel diferensiyel denkleminin trivial olmayan her bir çözümünün en fazla bir çözümü kapsar.

Teorem 1.11. Katsayıl fonksiyonları \(p_0, p_1\) ve \(p_2\) sürekli olmak üzere, \(u(x)\) ve \(v(x)\) fonksiyonları sırasıyla,
\[p_0 u'' + p_1 u' + p_2 u = r(x), \quad p_0 u'' + p_1 u' + p_2 u = s(x) \]
diferensiyel denklemlerin çözümleri ise, o zaman
\[p_0 u'' + p_1 u' + p_2 u = cr(x) + ds(x) \]
diferensiyel denkleminin çözümü ise, \(w = cu(x) + dv(x)\) olur.

Tanım 1.4. İkinci-mertebe homojen lineer
\[L[u] = p_0(x)u'' + p_1(x)u' + p_2(x)u = 0 \] (1.12)
diferensiyel denklemi ancak ve ancak,
\[p_0(x)u'' + p_1(x)u' + p_2(x)u = \frac{d}{dx}\left[A(x)u' + B(x)u\right] \] (1.13)
biriminde yazılabilirse TAM'dır denir. Burada \(u \in \mathcal{C}^2\) ve \(A(x), B(x) \in \mathcal{C}^1\) olarak verilir. \((1.12)\) diferensiyel denkleminin integral çarpanı \(v(x)\) gibi bir fonksiyondur. Öyleki \(vL[u] = 0\) ise, o zaman \((1.12)\) diferensiyel denklemine TAM'dır denir.
Tanım 1.5: (1.12) diferensiyel denkleminin bir integral çarpanı olan \(v \in C^2 \) fonksiyonu aynı zamanda ikinci-mertebe homojen lineer,

\[
M[v] = [p_0(x)v]' - [p_1(x)v]' + p_2(x)v = 0 \tag{1.14}
\]
diferensiyel denkleminin bir çözümüdür.

Tanım 1.6: (1.14) diferensiyel denklemindeki \(M \) operatörüne \(L \) operatörünün ADJOINT’ı denir. (1.14) diferensiyel denklemi yeniden düzenlenirse,

\[
p_0v'' + (2p_0-p_1)v' + (p_0' - p_1' + p_2)v = 0 \tag{1.15}
\]
diferensiyel denkleme varılır. (1.15) diferensiyel denkleme, (1.12) diferensiyel denkleminin ADJOINT DENKLEMİ denir.

Tanım 1.7: Yukarıdaki (1.12) ve (1.13) diferensiyel denklemlerinden,

\[
vL[u] - uM[v] = (vp_0)'u'' - u(p_0v)' + (vp_1)'u' + u(p_1v)'
\]
zıdeşliği elde edilir. Yeniden düzenlersek,

\[
vL[u] - uM[v] = \frac{d}{dx} \left[p_0vu' - (p_0v)'u + p_1uv \right] \tag{1.16}
\]
olar. Integralini alırsak,

\[
\int_a^b [vL[u] - uM[v]] dx = \left[p_0vu' - (p_0v)'u + p_1uv \right]_x = a
\]
zıdeşliği elde edilir. Bu zıdeşliğe LAGRANGE ÖZDEŞLİĞİ denir.

Tanım 1.8: Adjointleri ile birlikte homojen lineer diferensiyel denklemlere SELF-ADJOINT denklemler denir.
II. BÖLÜM

STURM-LIOUVILLE SİSTEMLERİ

2.1. Sturm-Liouville Sistemleri

İkinci-mertebeden homojen lineer,

\[
\frac{d}{dx} \left[p(x) \frac{du}{dx} \right] + \left[\lambda r(x) - q(x) \right] u = 0
\] (2.1)

diferensiyel denklemine STURM-LIOUVILLE DENKLEMİ denir. Burada \(\lambda \) bir parametre, \(p, q \) ve \(r \)-ler x-in reel değerli fonksiyonları ve \(p, r \)-ler pozitiftirler. \(L = D[p(x)D] - q(x) \) operatörü kullanılarak (2.1) diferensiyel denklemi yeniden yazılrsa,

\[
L[u] + \lambda r(x)u = 0
\] (2.1')

olur. Böylece reel \(\lambda \) için (2.1) diferensiyel denklemine SELF-ADJOINT'tir denir. (2.1) denkleminin çözümlerinin bulunması \(q, r \) katsayı-fonksiyonlarının sürekli ve \(p \)-nin de sürekli diferensiyellenebilir olmasıına bağlıdır (\(C^1 \) de).

Verilen \(\lambda \) değeri için (2.1) denklemi, \(u \in C^2 \) fonksiyonunu \(L[u] + \lambda ru \) ya dönüştüren bir lineer operatördür. Sonlu \(a \leq x \leq b \) aralığında \(p(x) \) ve \(r(x) \) fonksiyonları sıfırdan farklı değerler almak üzere, (2.1) Sturm-Liouville denklemine REGÜLER'dir denir, \(p, q, r \) sürekli fonksiyonları bu aralık üzerinde sınırlıdır.

Varlık teoreminden dolayı, her \(\lambda \) için \(a \leq x \leq b \) aralığında regüler Sturm-Liouville denkleminin \(C^2 \) sınıftında iki lineer bağımsız çözümü vardır.

Bir Sturm-Liouville denklemi ile sınır (uç nokta) şartlarından oluşan sisteme STURM-LIOUVILLE SİSTEMİ (veya

-13-
S-L sistemi) denir ve sınır şartlarına söyle tanımlanır.

Tanım 2.1. Sonlu \(a \leq x \leq b \) aralığı üzerinde regüler Sturm Liouville denklemi ile,

\[
\alpha u(a) + \alpha'u'(a) = 0 , \beta u(b) + \beta'u(b) = 0
\]

biçimindeki iki ayrı sınır şartından oluşan sisteme REGÜLER S-L SİSTEMİ denir. Burada \(\alpha = \alpha' = 0 , \beta = \beta' = 0 \) durumun hariç olmak üzere \(\alpha , \alpha' , \beta , \beta' \) verilen reel sayıllardır.

S-L sisteminin bir \(\lambda \) özdegerine karşılık gelen trivial olmayan her çözümü bir ÖZFONKSİYON'dur. Yani her özfonksiyon bir özdeğere bağlıdır.

Regüler S-L sisteminin bütün özdeğerlerinin kümesine sistemin SPECTRUM'u denir.

Örnek 2.1. \(0 \leq x \leq \pi \) aralığında \(u'' + \lambda u = 0 \) diferensiyel denklemi ile \(u(0) = u(\pi) = 0 \) sınır şartlarından oluşan sistem, \(\lambda_n = n^2 \) özdeğerlerine ve \(u_n(x) = \sin nx \) özfonksiyonlarına sahiptir \((n = 1, 2, \ldots) \).

Örnek 2.2. Sabit \(n \) için,

\[
\frac{d}{dx}[x \frac{du}{dx}] + \left[k^2 x - \frac{n^2}{x} \right] u = 0 , \ a \leq x \leq b
\]

formunda verilen Bessel denklemi, \(p = r = x, \lambda = k^2 \) ve \(q = \frac{n^2}{x} \) olmak üzere bir S-L denklemidir. \(0 < a < b \) için bu S-L denklemine \(u(a) = u(b) = 0 \) sınır şartlarının veya (2.2) formundaki ayrık sınır şartlarının eklenmesiyle bir regüler S-L sistemi elde edilir.

Ancak \(a = 0 \) için (2.3) diferensiyel denklemi bir regüler S-L sistemi olmaz. Çünkü \(p(x) \) katsayısı \(x = 0 \) için sıfırdır. \(0 \) zaman bir singular S-L sistemi elde edilir ki bu dördüncü konuda incelenmiştir.

-14-
Ayrıca sabit k ve değişken n için, (2.3) Bessel diferensiyel denklemi farklı bir S-L denklemini ifade eder. Çünkü parametreler farklıdır.

Tanım 2.2. S-L denkleminin katsayı fonksiyonları x-in $b-a$ periyodlu periyodik fonksiyonları olan S-L denkleminin

$$u(a) = u(b), \quad u'(a) = u'(b)$$

(2.4)

periyodik sınır şartlarında eklenirse S-L sisteminin diğer bir modeli elde edilir ki buna PERİODİK S-L SİSTEMİ denir.

Örnek 2.3. $\pi < x < \pi$ aralığı için $u'' + \lambda u = 0$ diferensiyel denklemi ile $u(-\pi) = u(\pi)$ ve $u'(-\pi) = u'(\pi)$ periyodik sınır şartlarından oluşan sistem, pozitif bir tamsayı olmak üzere $1, \cos nx, \sin nx$ özfonksiyonlarına sahiptir. $n > 0$ olmak üzere, tamsayıların karesi olan n^2 özdeğerine iki lineer bağımsız özfonksiyon karşılık gelir.

Örnek 2.4. Regüler S-L sisteminin diğer bir modeli,

$$u'' + (\lambda + 16\cos 2x)u = 0, \quad a \leq x \leq b$$

(2.5)

Mathieu denklemine ayırtı sınır şartlarının eklenmesiyle edilir. Burada $p = r = 1$ ve $q(x) = -16\cos 2x$'dir. $u(0) = -u(\pi)$

$$u'(0) = -u'(\pi)$$

ile, veya $u(0) = u(\pi), u'(0) = u'(\pi)$ periyodik sınır şartları ile, periyodik olan fakat regüler olmayan S-L sistemi elde edilir.

2.2. Sturm-Liouville Serileri

Örnek 2.1 ve örne 2.3'deki $u'' + \lambda u = 0$ S-L denklemine farklı sınır şartlarının eklenmesiyle iki farklı S-L sistem tanımlandı. Örnek 2.3'in çözümleri olan özfonksiyonlar Fourier serileri teorisinde kullanılan fonksiyonlardır. İl-leri analizde de gösterildiği gibi bu fonksiyonlar...
\[\pi \leq \pi \leq \pi \text{ aralığında ortogonaldir. Bu ise } m \neq n \text{ için,} \]
\[\int_{-\pi}^{\pi} \sin mx \sin nx \, dx = \int_{-\pi}^{\pi} \cos mx \cos nx \, dx = 0 \]
bağintisinin sağlanması demektir. \(O\) zaman \(m, n \in \mathbb{Z}\) için,
\[\int_{-\pi}^{\pi} \sin mx \cos nx \, dx = 0 \]
dir.

Örnek 2.1. deki \(\sin nx\) özfonksiyonları da \(0 \leq x \leq \pi\) aralığında ortogonaldir. S-L sisteminde ortogonalilik bağintisi, \(\text{eğer } m \neq n \text{ ise,}\)
\[\int_{-\pi}^{\pi} \sin mx \sin nx \, dx = 0 \]
olacak biçimde tanımlanır.

Şimdi aynı ortogonalilik bağintisinin genellikle regüler S-L sisteminin ve periyodik S-L sisteminin özfonksiyonları içinde gerçeli olduğunu göstereceğiz.

Tanım 2.1. I aralığı üzerinde reel değerli ve integrallenebilir \(f\) ve \(g\) fonksiyonlarının \(r\) ağırlık fonksiyonu ile ortogonal olması için gerek ve yeter şart,
\[\int_{I} r(x)f(x)g(x)dx = 0 \quad (2.6) \]
olmasıdır. Burada \(I\) aralığı sonlu veya sonsuz, açık veya kapalı olabilir.

Teorema 2.1. Farklı özdeğerlere sahip (2.1)-(2.2) regüler S-L sisteminin özfonksiyonları, \(r\) ağırlık fonksiyonu ile ortogonaldir. Eğer farklı \(\lambda\) ve \(\mu\) özdeğerlerine karşılık gelen özfonksiyonlar \(u\) ve \(v\) ise, \(O\) zaman,
\[\int_{a}^{b} r(x)u(x)v(x)dx = 0 \quad (2.7) \]
olur.
İşpat: \(L[u] = [p(x)u']' - q(x)u \) Operatörünü kullanalım. Burada sırasıyla (2.1)-in \(\lambda \) ve \(\mu \) özdeğerlerine karşılık gelen özfonksiyonların \(u \) ve \(v \) olması için gerek ve yeter şart,

\[
L[u] + \lambda r(x)u = L[v] + \mu r(x)v = 0
\]

olmasıdır. Bunun için birinci bölümdede verilen Lagrange özdeşliği kullanılarak,

\[
uL[v] - vL[u] = \frac{d}{dx} \left[p(x)[u(x)v'(x) - v(x)u'(x)] \right]
\]

ifadesi elde edilir. Bu eşitlikte \(L[v] \) yerine \(-\mu r(x)v, L[u] \) yerine \(-\lambda r(x)u \) ifadeleri kullanılarak bu özdeşliğin \(x=a \) ile \(x=b \) sınırları arasında integrali alınır ve düzenlenirse,

\[
(\lambda - \mu) \int_{a}^{b} r(x)u(x)v(x)dx = p(x) \left[u(x)v'(x) - v(x)u'(x) \right]_{x=a}^{x=b}
\]

olur.

(2.8) özdeşliği verilirken sınır şartları hakkında herhangi bir şey söylenmedi. Buradan şu sonuca varılır.

Sonuç 2.1.1. Eğer \(\lambda \) ve \(\mu \) parametreleri için \(u \) ve \(v \) \(a \leq x \leq b \) kapalı aralığında (2.1) S-L denklemini sağlarsa, (2.8) özdeşliği gerçeklenir.

(2.8) özdeşliğinin sağ tarafına, özdeşliğin SINIR TERİMİ denir.

Gerçekten teorem 2.1.in ispatı için ayrık sınır şartları altında, sınır teriminin sıfıra eşit olduğunu göstermek yeterlidir. Eğer \(\lambda' \neq 0 \) ise, (2.2) deki sınır şartlarından ilki gereği,

\[
p(a)[u(a)v'(a) - v(a)u'(a)] = [\lambda p(a)/\lambda'] [u(a)v(a) - v(a)u(a)] = 0
\]
olur. Eğer \(\alpha \neq 0 \) ise, (2.8) özdeşliğinin sağ taraflı \(x = a \) için düzenlenirse,

\[
[\alpha'p(a)/\alpha][u'(a)v'(a) - v'(a)u'(a)] = 0
\]
bulunur. Burada \(\alpha = \alpha' = 0 \) durumu hariç olmak üzere,

\[
p(a)[u'(a)v'(a) - v'(a)u'(a)] = 0
\]
esitliği sağlanır.

Aynı şekilde \(x = b \) sınır terimi içinde bu denklemler geçerlidir. Böylece \(\alpha = \alpha' = 0 \) ve \(\beta = \beta' = 0 \) durumları hariç olmak üzere (2.8) özdeşliğinin sağ tarafının sıfıra eşit olduğu gösterilmiş olur. Şimdi de (2.8)-in her iki tarafını sıfradan farklı \((\lambda - \mu) \) ifadesi ile bölersek, (2.7) formülü elde edilir.

Sonuç 2.1.2. Teorem 2.1. ile verilen ortogonalilik bağlantısı, periódik S-L sistemleri içinde geçerlidir.

Böylece (2.8) özdeşliğinin sağ tarafına \(x = a \) ve \(x = b \) sınırları uygulanırsa, sıfır bulunur.

-18-
2.3. Fiziksel Anlamları

Fizikçilerin deneySEL ve sezgisel olarak elde ettikleri bu sonuçlar, aşağıdaki da görüleceği üzere, dalgı hareketinin matematiksel teorisi olan diferensiyel denklemlerle ve sınır-değer problemleriyile tam olarak郑alabilir.

S-L sistemlerinin özfonksiyonlarının fiziksel anlamaları genellikle üç klasik örnek verilerek açıklanır.

2.3.1. Bir Telin Titreşimi

Titreşen bir telin kısmi diferensiyel denklemi,
\[y_{tt} = c^2 y_{xx}, \quad c^2 = T/r \] \hspace{1cm} (2.9)
ile verilir. Bu denklemden \(y \) yatay olarak dengeden uzaklaşan tarafı, \(T \) telin gerilimini ve \(r \)-de telin yoğunluğunu gösterir (\(r \) ve \(T \) sabittir). Basit harmonik duran dalgalar ayrılabılır değişkenlere bağlı olarak,
\[y(x,t) = u(x) \cos k(t - t_0) \] \hspace{1cm} (2.10)
biçiminde tanımlanır. Titreşen tel denklemi olan (2.9)-\(u \)
y(x,t)-nin sağlaması için, \(\lambda = k^2/c^2 \) olmak üzere \(u'' + \lambda u = 0 \) denklemi biçime getirilebilmesi gereklidir. Fizikte doğal olarak titreşen bir telin üç noktası sabittir. Yani \(y(a,t) = y(b,t) = 0 \) olur. Buradan da \(u'' + \lambda u = 0 \)
denklemine \(u(a) = 0, u(b) = 0 \) sınır şartlarının eklenmesiyle örnek olarak 2.1. deki S-L sisteminde varılır. Herbir özfonksiyona ait olan özdeğer \(k^2/4\pi^2 \) frekans karesi ile orantılıdır. Bu bağıntı mekanik ve elektromagnetik dalgalar arasındaki benzerlikten bulunur. Matematikçiler özdeğerlerin kümesini bir S-L sisteminin spektrumu olarak isimlendirirler.

2.3.2. Elastik Bir Çubuğun Boyuna Titreşimi

S-L sisteminin başka bir fiziksel yorumu, yerel sertliği \(p(x) \), yoğunluğu \(r(x) \) olan elastik bir çubuğun boyuna titreşimi ile kendini gösterir. Böyle bir çubuğun herhangi bir parçasının denge durumundan, boyuna ortalama yer değiştirmesi \(v(x,t) \) ile ifade edilir. \(x \) denge pozisyonunda iken \(v(x,t) \) ifadesi,

\[
r(x)\frac{\partial^2 v}{\partial t^2} = \frac{\partial}{\partial x}\left[p(x)\frac{\partial v}{\partial x}\right]
\]

(2.11)
dalga denklemini sağlar. Basit harmonik titreşim denklemının çözümü ayrıntılar ile,

\[
v(x,t) = u(x)\cos k(t-t_0)
\]

(2.12)
büyükme verildiğinden bu ifade,

\[
\frac{\partial}{\partial x}\left[p(x)\frac{\partial u}{\partial x}\right] + k^2 r(x) u = 0
\]

(2.13)
büyükmindeki S-L denklemlerinin çözümüdür. Bu son denklem (2.1) S-L denkleminin \(\lambda = k^2 \) ve \(q = 0 \) için özel durumudur.

Sonlu bir tel için \(a \leq x \leq b \) aralığında verilen farklı sınırlar şartlarından farklı fiziksel problemler elde edilir. Bu sınır şartlarının bağılaçaları,
\[u(a) = u(b) = 0 \quad \text{(değişmeyen sabit uçlar)} \]
\[u'(a) = u'(b) = 0 \quad \text{(serbest uçlar)} \]
\[u'(a) + \alpha u(a) = u'(b) + \beta u(b) \quad \text{(asnek tutulan uçlar)} \]
\[u(a) = u(b), \quad u'(a) = u'(b) \quad \text{(periyodik sınırlar)} \]

\[u(x) \] üzerinde verilen bu sınır şartları \(v(x,t) \) fonksiyonu içinde geçerlidir. Burada \(u \) için verilen adi türevler \(v \) için kısmi türevler olarak alınmalıdır. Bir telin boyuna titreşiminin doğal frekansları uygun şartlar altında (2.1) ile verilen \(S-L \) sistemlerinin çözümleridir.

2.3.3. Bir Zarın Titreşimi

Son olarak bir zarın titreşiminin \((r,\theta)\)-kutupsal koordinatlarındaki kısmi diferensiyel denklemi,

\[w_{tt} = c^2 (w_{xx} + w_{yy}) = c^2 (w_{rr} + r^{-1} w_r + r^{-2} w_{\theta\theta}) \quad (2.14) \]

biçiminde verilir. Duran dalgaların çözümlerinin bulunması \(w(r,\theta,t) \) ifadesinin

\[w(r,\theta,t) = u(r) \left\{ \cos \left[a \theta \cos k(t-t_0) \right] \right\} \quad (2.15) \]

biçiminde değişkenlerine ayırmakla mümkün olur. \(w \)-nin zar denklemini sağlaması için, \(u \)-nun (2.3) Bessel denkleminin bir çözümü olması gerek ve yeterdi.

Bessel denkleminin \(r=0 \)-daki singülarlığı ile kutupsal koordinatların orjindeki singülarlığı benzerdir. Eğer zar a yarıçaplı bir disk ise (davul derisinin titreşimi), o zaman fiziksel olarak \(u(a) = 0 \) ve singülar olmayan \(u(0) \) doğal sınır şartlardır. İlkinci şart sabit bir normalizasyon faktörüne bağlı olarak karakteristik Bessel denkleminin çözümüleri olan Bessel fonksiyonlarıdır.

-21-
2.4. Özel Sistemler

\[\lim_{x \to a} p(x) = 0, \quad \lim_{x \to a} r(x) = 0 \]
veya \(p, q \) ve \(r \) fonksiyonlarından \(x \to a \) herhangi biri \(a \)-da singular ise, o zaman a noktasını hariç tutulur.

Sadece I aralığı kapalı iken \(a \leq \ x \leq b \) sonlu aralığında verilen S-L denklemi, bir regüler S-L denkleminin benzerdir. I aralığı sonsuz, yarı–sonsuz veya I sonlu ve \(p \) veya \(r \) birinci yada ikinci sınırda sıfıra eşit yada I aralığında \(q \) süreksiz ise, (2.1) S-L denkleminden bir regüler S-L sistemi elde edilemez. Bu durumların herhangi birinde verilen S-L denkleminin SINGULAR'dır denir.

Örnek 2.5, Legendre diferensiyel denklemi,
\[((1 - x^2)u')' + \lambda u = 0, \quad -1 < x < 1 \quad (2.16) \]
biriminde tanımlanır. (2.16) diferensiyel denkleminin u çözümünün verilen aralığa sınırlı olması şartı, Singular S-L sistemine bir örnektir. Bu singular S-L sisteminin çözümleri olan \(P_n(x) \) Legendre polinomları, \(\lambda_n = n(n+1) \) özdeğerine karşılık gelen reel özfonksiyonlardır.

Örnek 2.6, Sabit \(n \) için örnek 2.2.deki Bessel denklemi
\begin{equation}
\frac{d}{dx}\left[x \frac{du}{dx}\right] + \left[k^2 x - \frac{n^2}{x}\right] u = 0 \quad 0 < r \leq a
\end{equation}

bu çımındedir. \(p=r=x, \lambda=k^2 \) ve \(q=n^2/x \) olmak üzere bir singular S-L denklemidir. Buradan bir singular S-L sistemi ancak \(a>0 \) olmak üzere, sınır şartları \(u(a)=0 \) ve \(r \to 0 \) için \(u(r) \) nin sınırlı olması durumunda elde edilir.

Yukarıda verilen singular S-L sisteminin özfonksiyonları \(J_n(k_jr) \) Bessel fonksiyonlardır. Burada \(k_j, n\)-inci dereceden Bessel fonksiyonunun \(j\)-inci sıfırdır. Bölüm 1'deki sonuç 4.'den \(J_n(x) \)-in birçok sıfıra sahip olduğu bilinmektedir. Dolayısıyla singular S-L sisteminin sayılabilir son-suuzlukta özdeğerleri vardır.

Tanım 2.4. I aralığı üzerinde verilen reel değerli bir \(f \) fonksiyonu, \(r(x) \) ağırlık fonksiyonuna bağlı olarak \(r(x)>0 \) olmak üzere) karesi-integrallenebilirdir denir ve

\[
\int_I f^2(x)r(x)dx < +\infty
\]

(2.17)

biçiminde gösterilir. Eğer \(r(x) \) ağırlık fonksiyonu özdeş o- larak \(1 \) ise, \(f \) fonksiyonu \(I \) aralığında karesi-integrallenebilirdir denir.

Karesi-integrallenebilir fonksiyonlar için Schwarz eşitsizliği,

\[
\left[\int_I f(x)g(x)r(x)dx\right]^2 \leq \int_I f^2(x)r(x)dx \int_I g^2(x)r(x)dx,
\]

(2.18)

biçiminde verilir. Bundan dolayı iki karesi-integrallenebilir
fonksiyonun çarpımında \(r(x) \) ağırlık fonksiyonuna bağlı olarak integrallenebilen bir fonksiyondur. Yani (2.18)-in solundaki integral sonlundur. (2.8)-in sağındaki sınır terimi alt ve üst limitlerde sıfıra eşittir.Şırartları için,
\[
\lim_{\alpha \downarrow a, \beta \uparrow b} p(x)[u(x)v'(x) - v(x)u'(x)] = 0 \quad (2.19)
\]
olur. \(p(a) = 0, p(b) = 0 \) ve \(u'(x) \)-in sonlu bir aralıktı sınırlı olmasından (2.19) sıfır olur.Öylece (2.19) sağlanacak-\(\gamma \)ından, (2.8)-den dolayı \(\lambda \) ve \(\mu \) özdeğerlerine karşılık gelen karesi-integrallenebilir \(u \) ve \(v \) özfonksiyonları için
\[
(\lambda - \mu) \int_a^b r(x)u(x)v(x)dx = 0
\]
esitliği sağlanır. Bu son integral genelleştirilmiş (improper) integral olabilir. Eğer \(\lambda \neq \mu \), sonuc 2.1. den \(u \) ve \(v \) ortogonaldir.Öylece de aşağıdaki teorem ispat edilmiş olur.

Teorema 2.2. Bir singular S-L sisteminin farklı özdeğerlerine karşılık gelen karesi-integrallenebilir \(u \) ve \(v \) özfonksiyonları, \(r \) ağırlık fonksiyonuna göre ortogonaldir ve (2.19)-dan dolayı sınır teriminde sıfırdır.

Bu teorem örne 2.5.e uygulanırsa Legendre polinomla-\(r \) r için ortogonal bağıntısı,
\[
\int_{-1}^{1} P_m(x)P_n(x)dx = 0 \quad , \quad m \neq n \quad (2.20)
\]
büçiminde sınır teriminde sıfırdır olarak bulunur. Ayrıca yi-\(\gamma \)ne yukarıdaki teoremin Bessel denklemine uygulanmasıyla Bessel fonksiyonları için ortogonal bağıntısı,
\[
\int_0^a x J_n(k_i x) J_n(k_j x) dx = 0, \quad k_i \neq k_j
\] \hspace{1cm} (2.21)

biçiminde verilir. Burada \(J_n(k_i a) = J_n(k_j a) = 0 \) dır.

Örnek 2.7. Hermit diferensiyel denklemi,
\[
u'' - 2xu' + \lambda u = 0, \quad -\infty < x < \infty
\] \hspace{1cm} (2.22)

biçiminde verilir. Bu denklemin serilerle çözümü sonucunda bulunan,
\[
a_{k+2} = (2k-\lambda)a_k / (k+1)(k+2), \quad k = 0, 1, 2, \ldots
\] \hspace{1cm} (2.23)

rekürans bağntısı kullanılarırsa, \(\lambda = 2n \) için \(n \)-inci dereceden bir polinom bulunur. Bu polinomlar \(a_n = 2^n \) ve \(a_{n-1} = 0 \) olması şartı ile normalleştirilirler. Böylece Hermit polinomları \(H_n(x) \) ile ifade edilerek yukarıdaki gibi verilmiş olur. Örneğin \(H_0(x) = 1, H_1(x) = 2x, H_2(x) = 4x^2 - 2 \), \ldots \) biçimindedir. Burada \(H_n(x) \), \(n \) çift ise çift fonksiyon ve \(n \) tek ise tek fonksiyon olduğu açıklanır. Hermit diferensiyel denklemi Bir S-L denklemi değildir. Çünkü bu denklem self-adjoint değilir. (2.22) diferensiyel denkleminde \(u \) yerine \(y = e^{-x^2/2} u(x) \) ifadesi yazılır, \(y(x) \) Hermit fonksiyonu için self-adjoint S-L denklemi,
\[
y'' + (\lambda - (x^2 - 1))y = 0, \quad -\infty < x < \infty
\] \hspace{1cm} (2.24)

olur. \(\lambda = 2n \) için, denklemin çözümleri \(e^{-x^2/2} H_n(x) \) fonksiyonlarıdır ki bu çözüm fonksiyonları karesi-integrallenebilir ve \(x \to \pm \infty \) için sıfıra eşit olurlar. Yani, \(\phi_n(x) = e^{-x^2/2} H_n(x) \) fonksiyonları (2.24) denklemi ve sınırlar şartlarından oluşan singular S-L sisteminin bir özfonksiyondur ve \(x \to \pm \infty \) olduğça \(y(x) \) çözümü sıfıra gider. Böylece Hermit polinomları için ortogonallık bağlıtır.
\[
\int_{-\infty}^{\infty} H_m(x)H_n(x)e^{-x^2} \, dx = 0, \quad m \neq n \tag{2.25}
\]
olarak yazılır. (2.25)–e (2.8) özdeşliğinin uygulanmasıyla
\[
2(m-n) \int_{-a}^{a} H_m(x)H_n(x)e^{-x^2} \, dx = \left[\phi_m'(x)\phi_n(x) - \phi_m(x)\phi_n'(x) \right]_{x=-a}^{x=a}
\]
ifadesi bulunur. Sınır terimleri \(e^{-x^2}\) yi içerir ki bunu \(x^n\) ile çarpıp limitini alırsak,
\[
\lim_{x \to \infty} x^n e^{-x^2} = 0 \tag{2.26}
\]
olar. (2.19)–dan dolayı sınır teriminin limiti sıfır olur.

2.5. Prüfer Dönüşümü

İkinci-mertebe, self-adjoint bir lineer diferensiyel denklem,
\[
\frac{d}{dx} \left[P(x) \frac{du}{dx} \right] + Q(x)u = 0, \quad a < x < b \tag{2.27}
\]
biçiminde verilsin. (2.27) diferensiyel denkleminin çözümle- rinin bulunabilmesi için kullanılan yöntemlerden birisi de şimdi vereceğiz Prüfer dönüşümüdür. Bu denklemde verilen katsayı fonksiyonlarından \(Q(x)\) sürekli, \(P(x) > 0\) ve \(P(x), Q\) sınıflandırır. \(a < x < b\) aralığında verilen (2.27) denklemi- nin çözümlerinin salınımalarını bulmak yerine, aynı aralıktaki sifirlerin sayısını bulmak yeterlidir. (2.27) ifadesinde \(P(x)\equiv 1\) alınarak, teorem 1.9 ile verilen Sturm-Karşalas-tıma teoremi uygulanacaktır. Yani teorem 1.9, (2.27) biçimindeki daha genel denklemlere genişletilecektir.

Prüfer'in amacı, \(u\) ve \(Pu\) bilinmeyen fonksiyonlar olmak üzere, \((Pu', u)\) düzlemini kutupsal koordinatlara dönüştüre- cek olan, ikinci-mertebeden iki tane diferensiyel denklemden

-26-
oluşan bu sistemi, (2.27) denklemine özdeş tutmaktadır. Prufer bu düşünceyle \(Pu' \) ve \(u \) bilinmeyenlerini,

\[
P(x)u'(x) = r(x) \cdot \cos \theta(x), \ u(x) = r(x) \cdot \sin \theta(x) \tag{2.28}
\]

bliğini tanımlandırı. Bu ifadelerden yeni \(r \) ve \(\theta \) bağlı değişkenleri çekilerek düzenlenirse,

\[
r^2 = u^2 + P^2 u'^2, \ \ \theta = \arctan \left(\frac{u}{Pu'} \right) \tag{2.28'}
\]

olur. Burada \(r \) UZUNLUK ve \(\theta \)-da FAZ DEĞİŞKENGİ olarak isimlendirilir. \(r \neq 0 \) iken, (2.28) ile tanımlanan \((Pu', u) = (r, \theta)\) dönüşümü Jacobian'ın sıfırdan farklı olması ile analitiktir.

Trivial olmayan çözümler için \(r \) daima pozitifdir. Çünkü verilen bir \(x \) değeri için, eğer \(u(x) = u'(x) = 0 \) ise, o zaman birinci bölümde verilen teoremlerinden dolayı \(u(x) \equiv 0 \) trivial çözüm olacaktır. (2.27)–ye denk olan diferensiyel denklem sistemi, \(r(x) \) ve \(\theta(x) \) için aşağıdaki gibi verilir.

Bunun için \(\cot \theta = Pu'/u \) nun diferensiyeli alınarsa (eğer \(\theta = 0 (\text{mod} \pi) \) ise o zaman tan \(\theta = u/Pu' \) ifadesinin diferensiyeli alınarak işlem yapılır),

\[-\csc^2 \theta \frac{d\theta}{dx} = \frac{(Pu')'}{u} - \frac{Pu'^2}{u^2} = -Q(x) - \frac{1}{P} \cot^2\theta \]

olur. Bu eşitliğin her iki tarafını \(-\sin^2 \theta\) ile çarparsak,

\[
\frac{d\theta}{dx} = Q(x) \sin^2 \theta + \frac{1}{P(x)} \cos^2 \theta = F(x, \theta) \tag{2.29}
\]

diferensiyel denklemini elde ederiz. Simdi de (2.28') ile verilen ifadelerden ilkinin diferensiyelini alır ve gerekli sadeleştirme ve düzenlemeleri yaparsak,
\[
\frac{dr}{dx} = \left[\frac{1}{F(x)} - Q(x) \right] r \cdot \sin \theta \cdot \cos \theta = \frac{1}{2} \left[\frac{1}{F(x)} - Q(x) \right] r \cdot \sin 2\theta, \quad (2.30)
\]
diferensiyel denklemi elde edilir.

(2.29)-(2.30) sistemi, (2.27) diferensiyel denklemine denktir. Bu yeni sistem trivialis olmayan her çözümü, (2.28) ile verilen Prüfer dönüşümünden, (2.27) diferensiyel denkleminin bir tek çözümü tanımlar ve terside doğrudur. Prüfer sistemi olarak isimlendirilen (2.29)-(2.30) diferensiyel denklem sistemi, (2.27) self-adjoint diferensiyel denklemi ile ilgili Prüfer sistemidir.

Prüfer sisteminin (2.29) ile verilen diferensiyel denklemi yalnızca θ-ya ve x-e bağlı birinci mertebeden bir diferensiyel denklemidir. Diğer r bağlı değişkenini içermez ve bu denklem,

\[
L = \sup_{a < x < b} \left| \frac{\partial F}{\partial x} \right| \leq \sup_{a < x < b} |Q(x)| + \sup_{a < x < b} \frac{1}{|F(x)|}
\]

biçimindeki Lipschitz sabiti ile Lipschitz şartını sağlar. L sabiti, kapalı bir aralıktaki P ve Q fonksiyonlarını sürekli iken sonlandır. Adı geçen P ve Q fonksiyonları (2.27) diferensiyel denklemlerinin katsayısı fonksiyonları olduğundan a-da sürekli olur. Ayrıca θ(a)=Y başlangıç değeri için, (2.29) diferensiyel denkleminin bir tek çözümü θ(x) olur.

r(x)-in θ(x)-e bağlı olarak bulunamalması için, (2.30) diferensiyel denkleminin integrali alınrsa,

\[
r(x) = K \left\{ \exp \left\{ \frac{1}{2} \int_{a}^{x} \left[\frac{1}{F(t)} - Q(t) \right] \sin 2\theta \ dt \right\} \right\}
\]

(2.30') olarak bulunur. Burada K=r(a) dir.

(2.29)-(2.30) Prüfer sisteminin her-bir çözümü iki sabite bağlıdır.
Bu sabitler $K=r(a)$ ilk uzunluk ve $\gamma=\theta(a)$ ilk fazdır. K sabiti, u çözümünün bir sabitle çarpımla değişir. Böylece (2.27) denkleminin bir $u(x)$ çözümünün sıfırları yalnızca (2.29) diferensiyel denklemi üzerinde çalışılarak bulunabilir.

2.6. Sturm Karşlaştırma Teoremi

(2.27) diferensiyel denklemmin her hangi bir $u(x)$ çözümünün sıfırları, (2.28) ile verilen Prüfer dönüşümündeki $\theta(x)$ faz fonksiyonunun $0, \pm \pi, \pm 2\pi, \pm 3\pi, \ldots$ değerleri için bulunur ve bütün bu x noktalarında $\sin \theta(x)=0$ dir. Bu noktalara her birinde $\cos^2 \theta=1$ olduğundan, (2.29) diferensiyel denkleminde $\frac{d\theta}{dx}$ pozitif olur ($P(x)>0$ olduğundan). Geometrik olarak bunun anlamı, (Pu', u) düzlemde diferensiyel denklemin bir u çözümüne karşılık gelen $(P(x)u'(x), u(x))$ eğrisi Pu' eksenini yalnızca $\theta=\pi$ noktalarında keser demektir (θ pozitif yönde alınmak üzere).

Simdi $Q_1(x) \geq Q(x)$ ve $P_1(x) \leq P(x)$ olmak üzere,

$$\frac{d\theta}{dx} = Q_1(x) \sin^2 \theta + \frac{1}{P_1(x)} \cos^2 \theta = F_1(x, \theta)$$

bıçimindeki diferensiyel denklem ile (2.29) diferensiyel denklemi karşılaştıralım. Eğer verilen bir I aralığında $Q_1(x) \geq Q(x)$ ve $P_1(x) \leq P(x)$ ise, o zaman $F_1(x, \theta) \geq F(x, \theta)$ olur. Birinci bölümde teorem 1.6 ile verilen karşlaştırma teoreminden hareketle, eğer $\theta(a) \geq \theta_1(a)$ başlangıç şartını sağlayacak şekilde yukarıdaki diferensiyel denklemın çözümü $\theta_1(x)$ ise, o zaman $a \leq x \leq b$ için $\theta_1(x) \geq \theta(x)$ olur. Yine birinci bölümdeki sonuç 1.2 den dolayı yalnızca $P(x) \equiv P_1(x)$ ve $Q(x) \equiv Q_1(x)$ olması durumunda $\theta(x) = \theta_1(x)$ olur.

-29-
Burada \(\sin \theta(x) = 0 \) alınırsa \(a < x < b \) için \(\sin \theta_1(x) \)-in sıfırlarının sayısı, \(\sin \theta(x) \)-in sıfırlarının sayısunandan daha çok olur (\(P \equiv P_1 \) ve \(Q \equiv Q_1 \) durumu hariç olmak üzere). Böylece aşağıda ifade edeceğimiz teoremi ispat etmiş oluruz.

Teorema 2.3 (Sturm Karşılaştırma Teoremi):

\[
\frac{d}{dx} [P(x) \frac{du}{dx}] + Q(x)u = 0, \quad \frac{d}{dx} [P_1(x) \frac{du_1}{dx}] + Q_1(x)u_1 = 0, \quad (2.31)
\]
diferensiyel denklemlerinde \(P(x) \geq P_1(x) \geq 0 \) ve \(Q_1(x) \geq Q(x) \) olarak verilsin. O zaman \(u(x) \equiv cu_1(x), P(x) \equiv P_1(x) \) ve \(Q(x) \equiv Q_1(x) \) olması durumu hariç olmak üzere, (2.31)-deki ilk diferensiyel denklemin trivial olmayan bir \(u(x) \) çözümünün iki sıfırı arasında, ikinci diferensiyel denklemın trivial olmayan her bir çözümünün en az bir sıfırı bulunur.

Birinci bölümde teorem 1.9 ile verilen Sturm-ayırma teoremi de (2.27) diferensiyel denklemine benzer olan diferensiyel denklemin iki lineer bağımsız çözümünün karşılaştırılması sonucunda elde edilmistir.

Kesin olmakla beraber, burada eğer \(P \) azalırken \(Q \) artıyorsa, diferensiyel denklemin herbir çözümündeki sıfırlarının sayısının arttığı söylenebilir.

Tanım 2.4. (maksimum ve minimum): Self-adjoint (2.27) diferensiyel denkleminde \(Q(x) > 0 \) olması, \(\theta = (n + \frac{1}{2}) \pi \) için \(\frac{d^2}{dx^2} > 0 \) olması demektir. Eğer (2.29) diferensiyel denkleminde \(\theta = (n + \frac{1}{2}) \pi \) ise, o zaman \(\cos \theta = 0 \) ve \(\sin \theta = 1 \) olur. Burada \(\cos \theta = 0 \) olduğundan, (2.29)-un \(\theta(x) \) çözümü pozitif olmak üzere ancak (2.27)-de \(u' = 0 \) ise, trivial olmayan herhangi bir çözümünün ardışık sıfırları arasında mutlaka bir maksimumu veya bir minimumu vardır.
2.7. Salınım Teoremi

Şimdi (2.1)-(2.2) regüler S-L sisteminin özfonksiyonlarının sıfırlarının sayısının λ-ya bağlı değişimini ele alalım. (2.1) S-L denkleminde $P(x)=p(x)$ ve $Q(x)=\lambda r(x) - q(x)$ yazarsak (2.27) denklemini elde ederiz. Mademki (2.28)-de $u=0$ olması için gerek ve yeter şart $\sin \theta=0$ olmasıdır. 0 halde (2.1)-in bir çözümünün sıfıraları $\theta=0, \pm \pi, \pm 2\pi, \pm 3\pi, \ldots$ noktalari olmak üzere $\theta(x)$,

$$\frac{d\theta}{dx} = [\lambda r(x) - q(x)] \sin^2 \theta + \frac{1}{p(x)} \cos^2 \theta , \quad a \leq x \leq b \quad (2.32)$$

yardımcı Prüfer denkleminin bir çözümü olur. Burada $a \leq x \leq b$ aralığında $p(x) > 0$ ve $r(x) > 0$-dir.

Şimdi de $\gamma - \gamma_1$, $\alpha \neq 0$ ve $0 \leq \gamma < \pi$ için,

$$\tan \gamma = u(a)/p(a)u'(a) = -\alpha'/p(a)\alpha \quad (2.32')$$

şartını gerçekleyecek biçimde seçelim. (2.32) diferensiyel denkleminin bir $\theta(x, \lambda)$ çözümü, her λ için $\theta(a, \lambda)=\gamma$ başlangıç şartını sağlamasın $(\gamma=\pi/2$ için $\alpha=0$ olur). α, α' sabitleri $\alpha u(a) + \alpha' u'(a)=0$ ilk sınır şartından bulunur. $\theta(x, \lambda)$ fonksiyonu γ sabiti için $a \leq x \leq b$ ile $-\infty < \lambda < \infty$ bölgesinde tanımlıdır. Birinci bölümde teorem 1.6 ile verilen karşılıştırma teoreminin (2.32) diferensiyel denklemine uygulanmasıyla aşağıdaki lemma elde edilir.

Lemma 2.7.1. $x > a$ sabiti için $\theta(x, \lambda)$ fonksiyonu λ değişkeninin tam artan bir fonksiyonudur.

Lemma 2.7.2. Kabul edelim ki $n \geq 0$ bir tamsayı olmak üzere $x_n > a$ için $\theta(x_n, \lambda)=n\pi$ olsun. 0 zaman $\forall x > x_n$ için $\theta(x, \lambda) > n\pi$ olur.
İşpat: Eğer \(x_n \) herhangi bir nokta ve \(\theta(x_n, \lambda) = n\pi \) ise o zaman (2.32) denkleminde,
\[
\frac{d\theta(x_n, \lambda)}{dx_n} = \frac{1}{p(x_n)} > 0
\]
olarak \(\theta = \theta(x_n, \lambda), x_n \) -in bir fonksiyonu olur. Yine \(\theta(x_n, \lambda) \) fonksiyonu, \(\theta = n\pi \) doğrusunu kestiği noktalarda artan bir fonksiyondur. Burada \(\theta(x, \lambda), x > x_n \) için aynı doğru üzerinde olmalıdır ki ispat biter.

Lemma 2.7.2. ye \(0 \leq y = \theta(a, \lambda) < \pi \) şartı eklenirse \(a < x < b \) açık aralığında \(u(x) \) -in ilk sıfırı \(\theta = \pi \) olarak bulunur ve \(n \)-inci sıfırı da \(\theta = n\pi \) olur. Bizim asıl göstermek istediğimiz şey sabit \(x \) için \(\lambda \to \infty \) olduğunda \(\theta(x, \lambda) \to \infty \) olduğuudur.

Lemma 2.7.2. yi tekrar ele alırsak, her \(n > 0 \) tamsayı\(s \) ve yeteri derecede büyük \(\lambda \)-lar için \(\theta(x_n, \lambda) = n\pi \) olacak şekilde \(x_n < x \) sayısının bulunabileceğini gösterirsek her \(x \) için \(\lim_{\lambda \to \infty} \theta(x, \lambda) = \infty \) olduğu gösterilmiş olur.

Farklı terimler ele alındığında \(\theta(x, \lambda) = n\pi \) olacak şekilde en küçük \(x, x_n(\lambda) \) olsun. \(0 \) zaman büyük \(\lambda \)-lar için \(x_n(\lambda) \)-nin varlığının gösterilmesine ihtiyaç vardır ve \(\lim_{\lambda \to \infty} x_n(\lambda) = a - \text{dir.} \) Bu durum şu lemma ile ifade edilir.

Lemma 2.7.3. n pozitif bir tamsayı olmak üzere \(x_n(\lambda) \) fonksiyonu, yeteri derecede büyük \(\lambda \)-lar için tanımlı ve sürekli bir fonksiyonu ve \(\lim_{\lambda \to \infty} x_n(\lambda) = a \text{ -dir.} \)

İşpat: Birinci bölümde teorem 1.1 ile verilen Lipschitz şartını \(a \leq x \leq b \) ve \(-\infty < \lambda < \infty \) için \(\theta(x, \lambda) \) fonksiyonu sağlar. Boylece \(\theta(x, \lambda), x \) ve \(\lambda \)-nin sürekli bir fonksiyondur.
Burada ilk ispatlayacağımız şey, eğer \(x_n(\lambda) \) fonksiyonu iyi tanımlı ise (yani bazı \(x \)-ler için \(\theta(x,\lambda) = n\pi \) ise), o zaman \(x_n(\lambda) \), \(\lambda \)-nin monoton azalan bir fonksiyon olduğu durur. Bunu ispatlamak için \(\theta(x,\lambda) \)-nin, \(\lambda \)-nin artan bir fonksiyonu olduğunu göstermek yeterlidir. Bu ise lema 2.7.1. ile verilmiştir.

Şimdi \(n \) sabit olmak üzere, yeteri derecede büyük \(\lambda \)-lar için \(x_n(\lambda) \)-nin iyi tanımlı olduğunu gösterelim. Burada yeteri derecede büyük \(\lambda \)-lar için \(\theta(x,\lambda) = n\pi \) olacak şekilde \(a \leq x \leq b \) aralığında bir \(x \) vardır. (2.28) -deki dönüşümle kullanılarak bu ifade, (2.1) diferensiyel denklem inin çözümü için eşit bir ifadeye dönüştürülür.

Eğer \(\theta(x,\lambda) \), \(x \)-in sürekli bir fonksiyonu ve \(\theta(a,\lambda) = y \pi \) ile \(n\pi \) arasındaki bütün değerleri alıyorsa, (2.1) S-L denklem inin trivialolmayan her bir çözümü \(a \leq x \leq b \) aralığında en az \(n \) tane sıfıra sahiptir.

\(a \leq x \leq b \) aralığı üzerinde verilen \(p(x), q(x) \) ve \(r(x) \) katsayı fonksiyonlarından \(p(x) \)-in maksimumu \(p_M \), \(q(x) \)-in maksimumu \(q_M \) ve \(r(x) \)-in minimumu da \(r_m \) olsun. O zaman

\[
p_Mu'' + (\lambda r_m - q_M)u = 0, \quad \lambda > q_M / r_m \tag{2.33}
\]

diferensiyel denklem inin çözüm fonksiyonu \(u_1(x) = \sin kx \) dir ki burada \(k^2 = (\lambda r_m - q_M) / p_M \) olur. Bu \(u_1(x) \) çözüm fonksiyonunun ardışık sıfırları arasındaki uzaklık \(\mathbb{P} \sqrt{p_M / (\lambda r_m - q_M)} \) dir.

Yukarıda teorem 2.3 ile verilen Sturm-karsılaştırm a teoremininden dolayı, (2.1) S-L denklem inin trivial olmayan bir \(u(x) \) çözümünün enaz bir sıfırlı, (2.33) denklem inin bir
\(u_1(x) \) çözümünün herhangi iki sıfırdan arasında olmalıdır. Çünkü \(\lambda \) yeteri derecede büyük iken \(u_1(x) \) fonksiyonu \((a,b)\) aralığında \(n \) tane sıfıra sahiptir ve \(\theta(x,\lambda) \) fonksiyonu, yeteri derecede büyük her \(\lambda \) için \(n=\infty \) değeri alır ki ispatlanmasi istenen de budur.

\(x_n(\lambda) \) sayısı, \(u_1(x) \)-in \((n-1)\) ve \(n\)-inci sıfırları arasında alınacak olursa \(\lambda \to \infty \) için bu sıfırların her ikisi de \(a \)-ya gider. Bundan dolayı \(\lambda \to \infty \) olduğunda \(x_n(\lambda) \to a \) olur ki böylece aşağıdaki teoreme varılır.

Teorem 2.4 (Salınım Teoremi): Her \(\lambda \) için \(\theta(a,\lambda)=y<<\Pi \) başlangıç şartını sağlayan (2.32) diferensiyel denkleminin \(\theta(x,\lambda) \) çözümü, \(a<x<b \) aralığında sabit \(x \) için \(\lambda \)-nin tam artan bir fonksiyonudur ve sürekli dir. Ayrıca \(a<x<b \) aralığında,

\[
\lim_{\lambda \to \infty} \theta(x,\lambda) = \infty , \quad \lim_{\lambda \to -\infty} \theta(x,\lambda) = 0 \tag{2.34}
\]

olur.

İspat: Bu teoremin ilk iddiası lemma 2.7.1 ve lemma 2.7.3. ile ispatlandığı (2.34) ifadelerinden ilki yukarıda ispatlandığı gibi, \(\lambda \)-nin tam artan bir fonksiyonudur ve sürekli dir. \((a,\gamma_1) \) ve \((x_1,\epsilon) \) noktalarının birleştirilmesiyle elde edilen doğrunun eğimi \((\epsilon - \gamma_1)/(x_1 - a)\) ya eşit olur \((a<x<b \) için). Doğru üzerindeki bir \((x,\epsilon) \) noktası için (2.32) ile verilen \(\theta(x,\lambda) \)-nin eğimi, \(\lambda \) negatif yönde arttıkça doğrunun eğiminden daha az olacaktır. Bundan dolayı yeteri derecede büyük negatif \(\lambda \)-lar için \(a \leq x \leq b \) aralığındaki doğru parçası \(\theta(x,\lambda) \) fonksiyonunun aşağısında kalır.
Buradan yeteri derecede büyük negatif λ-lar için $\Theta(x_1,\lambda) \leq \varepsilon$ olarak bulunur. Çünkü Lemma 2.7.2. den dolayı $\Theta(x_1,\lambda) > 0$ olduğundan $|\Theta(x_1,\lambda)| \leq \varepsilon$ olur. Burada ε ve x_1 keyfî olarak seçildiğinden ispat biter.

Şimdi $a \leq x \leq b$ aralığında p_m ve q_m sırasıyla $p(x)$ ve $q(x)$'in minimumu ve r_M-de $r(x)$'in maksimumu olarak verilsin. O zaman

$$p_m u'' + (\lambda r_M - q_m) u = 0$$ \hspace{1cm} (2.35)

diferensiyel denklem ile (2.32) diferensiyel denkleminin karşılaştırılmasından (2.1) regüler S-L denkleminin çözüm lerinin sıfırlarının durumları hakkında bir yaklaşım verilir.

Şimdi de $tan\gamma = u(a)/p(a)u'(a)$ için (2.33) ve (2.35) diferensiyel denklemlerinin çözümlerini düşünelim. Bu çözümlerin sıfırları sırasıyla,

$$\frac{(n\pi - \gamma)}{\sqrt{\lambda r_m - q_m} / p_m} \quad \text{ve} \quad \frac{(n\pi - \gamma)}{\sqrt{\lambda r_M - q_m} / p_m}$$

olar. Sturum karşılaştırma teoreminin bu ifadeler uygulanmasıyla şu sonuç elde edilir.

Sonuç 2.4.1. (2.1) S-L denkleminin trivial olmayan herhangi bir çözümünün n-inci sıfırdı x_n olsun. O zaman,

$$\sqrt{\frac{p_m}{\lambda r_M - q_m}} \leq \frac{x_n - a}{n\pi - \gamma} \leq \sqrt{\frac{p_m}{\lambda r_M - q_m}}$$ \hspace{1cm} (2.36)

olar.

Bundan evvelki ispatlar (2.2) ile verilen sınır şartlarında $\alpha \neq 0$ kabul edilerek yapıldı.
Eğer \(\alpha = 0, \beta \neq 0\) ise, bu durum içinde benzer bir ispat
\(t = a + b - x\) bağımsız değişken dönüştümü altında yapılır.
Yine eğer \(\alpha = \beta = 0\) ise, o zaman \(\gamma = \pi/2\) olacağından yukarıdaki ispatlara benzer olarak ispat yapılır.

2.8. Özfonsiyonların Dizisi

Şimdi (2.1) S-L denklemi ile (2.2) ayrı sıır şartlarından yada

\[
A[u] = \alpha u(a) + \alpha' u'(a) = 0, \quad B[u] = \beta u(b) + \beta' u'(b) = 0, \quad (2.37)
\]
ayırıcı sıır şartlarından oluşan regüler S-L sisteminin öz-fonsiyonlarının sonsuz bir dizisinin varlığını ispatlayacağı.

Öncelikle (2.37) sıır şartlarını, (2.1) S-L denklemini karşılık gelen (2.29)-(2.30) Prüfer sistemindeki \(\Theta(x, \lambda)\) faz fonsiyonunun sıır şartlarına özdeşleyeceğiz. Eğer \(\alpha \neq 0\) ise o zaman \(\Theta(x, \lambda)\) fonsiyonu, \(\Theta(a, \lambda) = \gamma\) başlangıç şartını sağlamalıdır. Burada \(\gamma, 0 \leq \gamma \leq \pi\) aralığında, \(p(a) \tan \gamma = -\alpha'/\lambda\) olacak şekildeki en küçük pozitif sayıdır. Böylece \(\alpha = 0\) iken \(\gamma = \pi/2\) olur. Benzer şekilde \(\delta - \eta\) \(0 < \delta \leq \pi\) olarak seçsek \(\tan \delta = -\beta'/\beta p(b)\) olur. \(a \leq x \leq b\) aralığında (2.1) diferensiyel denklemi ile (2.37) sıır şartlarından oluşan regüler S-L sisteminin bir \(u(x)\) çözümünün özfünsiyon olması için gerek ve yeter şart, (2.28') ile verilen \(\Theta(x, \lambda)\) faz fonsiyonunun,

\[
\Theta(a, \lambda) = \gamma, \quad \Theta(b, \lambda) = \delta + n\pi, n = 0, 1, 2, \ldots, 0 \leq \gamma \leq \pi, 0 < \delta \leq \pi,
\]

şartlarını sağlanmasıdır. Burada (2.38) şartını sağlayan \(\lambda\) değerinin, verilen regüler S-L sisteminin bir özdegeri olduğu açıktır ve terside doğrudur.
\(\theta(x, \lambda), (2.32) \) diferensiyel denkleminin \(\theta(a, \lambda) = \gamma \) başlangıç şartını sağlayan bir çözüm olsun. Farklı \(\lambda \) parametrik değerleri için, farklı özfonksiyonlar elde edilir.

Yukarıda verilen lemma 2.7.2. den dolayı \(\theta(b, \lambda) > 0 \) olur. \(\theta(b, \lambda), \lambda \) nin artan bir fonksiyonu ve \(\lambda \) nin \(-\infty\) dan artmasıyla (2.38) -deki ikinci şartı sağlayan bir \(\lambda_0 \) ilk değeri vardır. Bu \(\lambda_0 \) özdegeri için \(\theta(b, \lambda_0) = \bar{\gamma} \) olur. \(\lambda \) arttıkça, ikinci sınır şartını sağlayan biçimde \(\lambda_n \) in sonsuz bir dizisi vardır. Yani negatif olmayan bazı \(n \) tamsayıları için, \(\theta(b, \lambda_n) = \bar{\gamma} + n\bar{\Gamma} \) olur. Bu değerlerin her biri S-L sisteminin,

\[
u_n(x) = r(x) \sin \theta(x, \lambda_n)
\]
(2.39)

biçimindeki bir özfonksiyonunu verir. Ayrıca teorem 2.4. den \(\lambda_n \) e karşılık gelen özfonksiyon \(a \leq x \leq b \) aralığında tam \(n \)-tane sıfıra sahiptir. Bu ise aşağıdaki teoremin ispatlanmasını demektir.

Teorem 2.5. Herhangi bir regüler S-L sistemi \(\lim_{n \to \infty} \lambda_n = \infty \) olacak şekilde reel \(\lambda_0 < \lambda_1 < \lambda_2 < \ldots \) özdeğerlerinin sonsuz bir dizisine sahiptir. Bir \(a < x < b \) aralığında \(\lambda_n \) özdeğerine karşılık gelen \(u_n(x) \) özfonksiyonunun tam \(n \)-tane sıfıra bir çarpana bağlı olarak tek şekilde verilir.

İşpat: Burada sadece çözümün bir çarpana bağlı olarak tek şekilde verildiğini göstermek yeterlidir. Bunun için \(\alpha u(a) + \alpha' u'(a) = 0 \) ilk şartını sağlayan (2.1) diferensiyel denkleminin herhangi iki çözümü, birinci bölümde verilen teklik teoremlerinden dolayı lineer bağlıdır.
2.9. Liouville Normal Form

\[(2.1) \text{ S-L denklemi,} \]
\[u = y(x)w, \quad t = \int h(x)dx, \quad y > 0, \quad h > 0 \] (2.40)

biçiminde verilen bağımlı ve bağımsız değişken dönüşümüleri yapılarak oldukça kolay hale indirenbilir. Eğer \(y \) ve \(h \) fonksiyonları verilen aralıktan pozitif ve sürekli iseler birinci dönüşüm, sıfırlarının yerini değiştirmez. İkinci dönüşüm ise sıralanış koruyarak, bağımsız değişkenin aralığını değiştirir ve karşılık gelen aralıklarda, çözümün sıfırlarının sayısını sabit bırakır. (2.1) S-L denklemine denk olan \(w \) ve \(t \)-ye bağlı diferensiyel denklemi, (2.40) -in ikinci denklemini veya \(\frac{d}{dx} = h(x) \frac{d}{dt} \) eşitliğini kullanarak buluruz.

Yukarıda (2.40) -de verilen dönüşümler altında (2.1) S-L denklemi,

\[0 = h(h_p(yw)_t)_t + (\lambda r - q)yw \]

\[= h[p_yh w_{tt} + [(h_p)_t y + 2hp_y]w_t + (hp_{yt})_w + (\lambda r - q)yw \]

biçimine dönüşür.

Bu son denklemin her iki tarafi \(w_{tt} \) -nin \(p_yh^2 \) katsayısı ile bölersek, yukarıdaki diferensiyel denklem \((h, y \in \mathbb{C}_2 \) için)

\[w_{tt} + (p_yh)^{-1}[(h_p)_t y + 2hp_y]w_t + [(p_yh)^{-1}(hp_{yt})_t + h^{-2}p^{-1}(\lambda r - q)]w = 0 \]

olarak \(\lambda (r/ph^2)w \) -nin \(\lambda w - ye \) indirgenebilmesi için gerek ve yeter şart \(h^2 = r/p \) olmasıdır ve \(w_t \) -nin katsayısinin sıfır olabilmesi için gerek ve yeter şart,

\((hp)_t /hp = -2y_t /y \) olmasıdır. Buda ancak \(y^2 = (hp)^{-1} \)
olarak seçilmesiyle mümkün olur. Böylece \(w \) ve \(t \) -nin denk
diferensiyel denklemi,

\[
u = \frac{w}{\sqrt[4]{p(x)r(x)}} \quad , \quad t = \int \frac{r(x)}{p(x)} \, dx
\]

(2.41)

olarak bulunur ki bu dönüşümlere İNDİRGENMİŞ LIOUVILLE NORM-
MAL FORM denir. Burada \(p \) ve \(r \) tanımlı aralığının her yerinde
pozitif olduğundan bu değişken dönüşümü sonuçunda bulunan
\(h(x) \) ve \(y(x) \) pozitif ve \(C^2 \) sınıfındadır. Böylece de \(p \) ve \(r-
de \(C^2 \) sınıfında olur.

Teorem 2.6. (2.1) S-L denkleminin \(p, r \in C^2 \) ve \(q \in C \) kat-
sayar fonksiyonlarına (2.41) Liouville dönüşümü uygulanırsa,

\[
\frac{d^2 y}{dt^2} + \left[\lambda - \hat{q}(t) \right] y = 0
\]

(2.42)

normal formu elde edilir. Burada \(\hat{q}(t) \),

\[
\hat{q} = \frac{q}{r} + (pr)^{-1/4} \frac{d^2}{dt^2} \left[(pr)^{1/4} \right]
\]

(2.43)

biçimindedir.

(2.43) eşitliğinin ikinci türevisi alınır ve \(\frac{d}{dt} = (\frac{p}{r})^{1/2} \frac{d}{dx} \)
özdeşliği kullanılarak, \(\hat{q} \) ifadesinin,

\[
\hat{q} = \frac{q}{r} + \frac{p}{r} \left[\left(\frac{p'}{p} \right)' + \left(\frac{r'}{r} \right)' + \frac{2}{r} \left(\frac{p'}{p} \right)^2 + \frac{1}{2r} \left(\frac{p'}{p} \right) \left(\frac{r'}{r} \right) - \frac{1}{4} \left(\frac{r'}{r} \right)^2 \right]
\]

(2.43')

rasyonel formu bulunur.

(2.1) diferensiyel denklemi \(a \leq x \leq b \) aralığında tanımlı
ve \(t \) değişkeni, \(t = \int_a^b \sqrt{r(s)/p(s)} \, ds \) biçiminde belirli bir
integral ise, o zaman (2.42) denk diferensiyel denklemi \([0, c]\)
aralığında tanımlıdır. Burada \(c = \int_a^b \sqrt{r(x)/p(x)} \, dx \) olur.

(2.43) ifadesinin paydasi sıfırsa sınırlı olduğundan \(p, r \in C^2 \)
ve \(q \in C \) katsayı fonksiyonu bir S-L denklemi, Liouville dö-
nüşümüyle \(\hat{q} \in C \) olur ve (2.42) diferensiyel denklemi bir S-L
denklemine dönüşür.

\[-39 - \]
Sonuç 2.9.1. (2.41) Liouville dönüşümü, regüler S-L sistemlerini regüler S-L sistemlerine, farklı ve periyodik sınır şartlarını farklı ve periyodik sınır şartlarına dönüştürür. Dönüştürülen sistem ile orijinal sistemin özdeğerleri aynıdır.

Şimdi de (2.41) Liouville dönüşümü u(x) ve v(x) fonksiyonlarını f(t) ve g(t) fonksiyonlarına dönüştürün. 0 zaman,\[
\int_0^c f(t)g(t)dt = \int_a^b u(x)v(x)\sqrt{p(x)r(x)}\sqrt{\frac{r(x)}{p(x)}} dx
\]
\[= \int_a^b u(x)v(x)r(x)dx \quad (2.44)
\]
olur.

Sonuç 2.9.2. (2.41) Liouville dönüşümü, r ağırlıklı or-togonal fonksiyonları birim ağırlıklı ortogonal fonksiyonlara dönüştürür.

Yukarıda örnek 2.2 de
\[(xu')' + (k^2x - \frac{n^2}{x})u = 0\]
biriminde verilen Bessel denklemi, (2.1) S-L denkleminin \(p=r=x\) ve \(q=n^2/x\) özel durumudur. Burada (2.41) Liouville dönüşümünde \(u=w/\sqrt{x}\) ve \(t=x\) alınrsa, Bessel diferensiyel denklemi,
\[\frac{d^2w}{dx^2} + \left[k^2 - \frac{n^2 - 1/4}{x^2} \right]w = 0 \quad , \quad w = x^{1/2}u \quad (2.45)\]
birimine dönüştürür.

Eğer \(n=1/2\) ise, (2.45) Bessel denklemi \(w'' + k^2w = 0\) trigonometrik diferensiyel denkleme dönüşür ve \(\cos kx\) ve \(\sin kx\) (\(k=1,2,3,\ldots\)) içeren çözümlerin bir bazına sahiptir. \(J_{1/2}(0)=0\) olduğundan \(J_{1/2}(x)\) ifadesi, \((\sin x)/\sqrt{x}\) in bir
sabitle çarpımına eşittir.

2.10. Modified Prüfer Dönüşümü

Bir S-L denkleminin Liouville normal formuna Prüfer dönüşümünün geliştirilmiş uygulanırsa, büyük n-ler için geçerli n-inci özfonksiyon \(u_n(x) \)-in asimptotik formülü bulunabilir. Bundan önce konuda verilen Liouville dönüşümleri kullanılarak bir regüler S-L sistemi,

\[
\frac{d^2 u}{dx^2} + (\lambda - q(x)) u = 0, \quad q(x) = \lambda - q(x) \quad (2.46)
\]
diferensiyel denklemi ile

\[\alpha u(a) + \alpha' u'(a) = 0, \quad \beta u(b) + \beta' u'(b) = 0 \quad (2.47)\]

ayrıksınır şartlarından oluşan bir regüler S-L sistemine dönüştürüldü. Burada \(\alpha^2 + \alpha'^2 \neq 0 \) ve \(\beta^2 + \beta'^2 \neq 0 \) dır. Yukarıda verilen sonuç 2.9.1. den bu yeni sistemin özdeğerleriyle orjinal sistemin özdeğerleri aynıdır ve özfonksiyonları da Liouville dönüşümüyle elde edilen Liouville normal formundan bulunur. Özdeğerlerin dağılıının incelenmesi ve özfonksiyonların öneminin anlaşılması için (2.46)-(2.47) sisteminin incelenmesi yeterli olur.

Burada \(a \leq x \leq b \) için \(Q(x) > 0 \) olarak kabul edeceğiz. Böylece de \(\lambda > q(x) \) ve \(Q \in C^1 \) olur. Şimdi (2.46) diferensiyel denkleminin bir \(u(x, \lambda) \) çözümü, \(R(x, \lambda) \) ve \(\varphi(x, \lambda) \) fonksiyonlarına bağlı olarak,

\[
u = \frac{R}{\sqrt{Q}} \cos \varphi, \quad u' = R \frac{4}{\sqrt{Q}} \sin \varphi \quad (2.48)
\]

biçimindeki ifadeler ile tanımlayalım. Burada sırasıyla \(R(x, \lambda) \) ve \(\varphi(x, \lambda) \) ifadelerine MODIFIED UZUNLUK VE MODIFIED FAZ dersek, (2.46) diferensiyel denklemi için MODIFIED PRÜFER SISTEMİ elde edilir.

-41-
Buradan hareketle (2.46) diferensiyel denklemine denk olan R ve \(\varphi \) -nin diferensiyel denklem çiftini oluşturacağız. Bu nun için (2.48)-deki denklemlerden,

\[
\tan \varphi = \frac{1}{\sqrt{Q}} \frac{u'}{u}, \quad R^2 = \sqrt{Q} u^2 + \frac{1}{\sqrt{Q}} u'^2
\]

(2.49)

ifadelerini yazarız. (2.49) daki ifadeler \(u \neq 0 \) için geçerlidir. Eğer \(u = 0 \) ise, \(\cot \varphi = \sqrt{Q} \frac{u'}{u} \) alınarak benzer işlemler yapılır. (2.49)-deki ilk ifadenin diferensiyelini alırsak,

\[
(\sec^2 \varphi) \varphi' = -\frac{Qu^2 + u'^2}{Q^{1/2}u^2} - \frac{1}{2} \frac{Q'}{Q} \frac{u'}{u}
\]

olur (\(u'' = -Qu \) seçilirse). Son ifade (2.49)-daki ikinci ifadeyi kullanır ve gerekli düzenlemeyi yaparsak,

\[
(\sec^2 \varphi) \varphi' = -\frac{R^2}{u^2} - \frac{1}{2} \frac{Q'}{Q} \tan \varphi
\]

olur. Eşitliğin her iki yanını \(\cos^2 \varphi \) ile çarpır ve gerekli sadeleştirir ve gerekli ilk terim sifira eşit olur. Buradan

\[
\varphi' = -Q^{1/2} - \frac{1}{4} \frac{Q'}{Q} \sin 2\varphi
\]

(2.50)

diferensiyel denklemi elde edilir.

\(R \)-nin sağladığı diferensiyel denklemi bulmak için de (2.49)-daki ikinci ifadenin diferensiyeli alınırsa,

\[
2RR' = 2Q^{-1/2}(Qu' + u'u'') + \left(\frac{Q'}{2Q} \right)(Q^{1/2}u^2 - Q^{-1/2} u'^2)
\]

eşitliği elde edilir. \(u'' = -Qu \) olduğundan eşitliğin sağda- ilk terim sıfıra eşit olur. Buradan

\[
\frac{R'}{R} = \frac{Q'}{4Q} (\cos^2 \varphi - \sin^2 \varphi) = \frac{Q'}{4Q} \cos 2\varphi
\]

(2.51)

biçiminde bir diferensiyel denklem elde edilir. \(\lambda \) ve \(q \) te- terimlerine bağlı MODIFIED PRÜFER SİSTEMLİ,
\[\varnothing' = -\sqrt{\lambda - q} + \frac{q'}{4(\lambda - q)} \sin 2\varnothing \]
(2.52a)

\[\frac{R'}{R} = -\frac{q'}{4(\lambda - q)} \cos 2\varnothing \]
(2.52b)

b içminde oluşturulur.

(2.46)‘nin trivial olmayan her bir çözümüne modified Prüfer sisteminin bir çözümünün karşılık geleceği açıktır ve terside doğrudur. Ayrıca R sıfırdan farklı olduğunda R > 0dır. (2.52a) ve (2.52b) diferensiyel denklemleri, \(\lambda \to \infty \) olduğuunda (2.46) diferensiyel denkleminin asimptotik durum olarak bulunur. \(\varnothing(x, \lambda) \) ve R(x, \lambda) ifadeleri aşağıdaki teoremler ile verilir.

Teorem 2.7. \(\varnothing(x, \lambda) \) ve R(x, \lambda) ifadeleri (2.52a) ve (2.52b) modified Prüfer sisteminin çözümlerini olarak verilsin. Burada q(x) \(\in C^1 \) ve sınırlıdır. O zaman yeteri derecede büyük her \(\lambda \) için,

\[\varnothing(x, \lambda) = \varnothing(a, \lambda) - \sqrt{\lambda}(x - a) + O(1)/\sqrt{\lambda} \]
(2.53)

ve

\[R(x, \lambda) = R(a, \lambda) + O(1)/\lambda \]
(2.54)

olur.

Burada yeteri derecede büyük \(\lambda \)-lar için (2.53)-(2.54) ifadelerinden \(\varnothing \) ile gösterilen modified faz, yakinluk olarak \(\sqrt{\lambda} \)-nin lineer bir fonksiyonu ve R ile ifade edilen modified uzunluk da yakinlık olarak sabit bir fonksiyondur.

Tanım 2.10.1. (O(1) sembolü): Yeteri derecede büyük her \(\lambda \) için, x ve \(\lambda \)-nin fonksiyonu olan f(x, \lambda) a \(\leq x \leq b \) aralığında daima sınırlıdır ve \(\lambda \to \infty \) olduğuunda O(1) sembolü ile gösterilir.
0(1)/\lambda^3 ifadesi, \lambda^3f(x,\lambda) ile daima sınırlı bir f(x,\lambda) fonksiyonudur. Çoğu kez 0(1)/\lambda^3 sembolü, O(\lambda^{-3}) olarak ifade edilir.

Burada f(x,\lambda) bir fonksiyon olarak verildiğinden f(x,\lambda) = O(1) formülü basit bir denklem değildir. Böylece O(1) bir fonksiyon olmadığını 0(1) = f(x,\lambda) yazılıması anlamlandır. Bu formülün anlamı, \lambda \to \infty iken, bütün x-ler için f(x,\lambda) daima sınırlı kalacaktır ve hiçbir özelliği olmayan f(x,\lambda) fonksiyonu amacımsız uygun olduğu için gerekli olur. Bu tanımin kullanılmasiyla 0(1) sembölü aşağıdaki önemli özellikleri sağlar.

0(1) + 0(1) = O(1) , 0(1).0(1) = O(1)

ve sonlu a,b için, \int_a^b 0(1) dx = O(1) dir. Ayrıca a ve b reel sayıları için a \leq b olmak üzere \frac{0(1)}{x^\alpha} + \frac{0(1)}{x^\beta} = O(1)

olar. Sonuç olarak q(x), x-in sınırlı bir fonksiyonu ise o zaman Taylor formülünden \lambda \to \infty iken

(\lambda - \frac{q}{\lambda})^\alpha = \lambda^{\alpha}(1 - \frac{q}{\lambda})^\alpha = \lambda^{\alpha} - \alpha q(\lambda) \lambda^{\alpha - 1} + O(1) \lambda^{\alpha - 2}

olar. Bundan sonraki ispatlarımızda yukarıdaki formüller kullanılacaktır.

İspat: Her \lambda için [0,b] aralığında \left|q(x)\right|>0 olacaktırından

\frac{q'}{\lambda - q} = \frac{q'}{\lambda}\left[1 + \frac{O(1)}{\lambda}\right] = \frac{q'}{\lambda} + \frac{O(1)}{\lambda^2}

olar. Bu ifadede q'-ler sadeleşir ve yeniden düzenlersek,

\sqrt[\lambda - q] = \lambda \left[1 + \frac{q}{\lambda}\right]^{1/2} = \sqrt{\lambda} - \frac{q}{2\sqrt{\lambda}} + \frac{O(1)}{\lambda^{3/2}}

ifadesine varılır.
Birinci bölümde verilen Lipschitz şartı ve karşılıştırma teoremleri kullanılarak, (2.52a) ve (2.52b) diferensiyel denklemlerin çözümüyle,

\[\varphi_1(x, \lambda) = \varphi(a, \lambda) - \sqrt{n}(x-a) \text{ ve } R_1(x, \lambda) = R_1(a) \] çözümleri karşılıştırılır, \(\varphi = -\sqrt{\lambda} \) ve \((\log R)' = 0 \) bulunur. Bu karşılıştırma sırasında \(x \) ve \(y \) yerine \(\varphi(x, \lambda) \) ve \(\varphi_1(x, \lambda) \) fonksiyonları komulursa \(\xi = O(1)/\sqrt{\lambda} \) bulunur. Eğer \(\varphi_1(a, \lambda) = \varphi(a, \lambda) \) ise, o zaman (2.53) ifadesinden elde edilen,

\[|\varphi(x, \lambda) - \varphi_1(x, \lambda)| \leq O(1)/\sqrt{\lambda} \]

esitsizliği elde edilir.

Aynı şekilde Taylor Formülü kullanılarak elde edilen
\[e^{O(1)/\lambda} = 1 + O(1)/\lambda \] özdeşliğinden hareketle \(R(x, \lambda) \) ile \(R_1(x, \lambda) \)-nin karşılıştırılmasından (2.54) ifadesi elde edilir.

2.11. Özdeğerlerin Dağılımı

Bir regüler S-L sisteminin özdeğerlerinin asimptotik dağılımı sınır şartlarıyla belirlenir. Burada \(u'' + \lambda u = 0 \) trigonometrik diferensiyel denkleminin durumu ilginçtir.

\(u(a) = u(b) = 0 \) sınır şartları altında trigonometrik diferensiyel denklemin n-inci özdegeri, \[\lambda_n = \frac{\pi^2}{(b-a)^2} \] ve karşılık gelen özfonksiyon \(u_n(x) = \sin \frac{n\pi(x-a)}{b-a} \) dir \((n = 1, 2, 3, \ldots) \). Benzer şekilde \(u(a) = u'(b) = 0 \) sınır şartları için diferensiyel denklemin n-inci özdegeri \[\lambda_n = \frac{(a-1/2)^2\pi^2}{(b-a)^2} \] ve karşılık gelen özfonksiyon ise \(u_n(x) = \sin \sqrt{\lambda_n}(x-a) \) olur. Ayrıca \(u'(a) = u'(b) = 0 \) sınır şartları için n-inci özdeger ise
\[\lambda_n = \frac{n^2 \pi^2}{(b - a)^2} \] olur, karşılık gelen \(n \)-inci özfonksiyon ise \(u_n(x) = \cos \sqrt{\lambda_n}(x - a) \) dir \((n = 0, 1, 2, ...) \)

(2.2) ayrıık sınırlar şartlarının durumu \(\alpha' \neq 0 \), \(\beta' \neq 0 \) iken ayrıntılı olarak incelenecektir. Bu durumda,
\[\sqrt{\lambda_n} = \frac{n \pi}{(b - a)} + \frac{O(1)}{n} \] olduğunu göstereceğiz \((n = 0, 1, 2, ...) \).

Burada (2.2) ayrıık sınırlar şartlarına \(\alpha' = 0 \), \(\beta' = 0 \) durumları hariç olmak üzere, regüler S-L denkleminin özdeğerlerinin ve özfonksiyonlarının asimptotik gösterimi ile, \(u'' + \lambda u = 0 \) S-L denklemi ve \(\alpha = \beta = 0 \) sınırlar şartlarının oluşturduğu S-L probleminin özdeğerlerinin ve özfonksiyonlarının asimptotik gösterimi benzerdir.

Teoremi 2.3. (2.46)-(2.47) regüler S-L sistemi için \(\alpha' \neq 0 \) ve \(\beta' \neq 0 \) olsun. \(0 \) zaman \(\lambda_n \) özdeğerleri \(n \to \infty \) olduğunda,
\[\sqrt{\lambda_n} = \frac{n \pi}{(b - a)} + \frac{O(1)}{n}, \quad n = 0, 1, 2, ... \quad (2.55) \]
formülü ile verilir.

Burada \(x \) ve \(n \)-in bir fonksiyonu olarak tanımlanan \(O(1) \), her \(n \geq 0 \) tam sayısını ve \(a \leq x \leq b \) aralığı için daima sinirlidir.

İşpat: \(A = -\frac{\alpha'}{\pi} \) ve \(B = -\frac{\beta'}{\pi} \) olsun. \(A \) ve \(B \) seçiminden dolayı sonlardır. Seçilen bir \(\phi(x, \lambda) \) çözümü yeteri derecede büyük \(\lambda \)-lar için,
\[\tan \phi(a, \lambda) = -\frac{A}{\sqrt{\lambda - q(a)}} \], \(-\pi/2 \leq \phi(a, \lambda) \leq \pi/2 \) (2.56) başlangıç şartını sağlar. İkinci sınırlar şartı (2.48)-e göre düzenlenirse, \(\phi(x, \lambda) \)-ya karşılık gelen \(u(x, \lambda) \) çözümünün bir özfonksiyon olması için gerek ve yeter şart,
\[
\tan \phi(b, \lambda) = - \frac{B}{\sqrt{\lambda - q(b)}}
\]

(2.57)

olur. (2.56) ifadesi \(\arctan \left[- \frac{A}{\sqrt{\lambda - q(a)}} \right] \) ifadesine dönüştürülerek, birinci dereceden \(\frac{1}{\sqrt{\lambda}} \) ifadesine yaklaştırılabilir.

Buradan \(\lambda \to \infty \) olduğunda ilk sınır şartı için,

\[
\varphi(a, \lambda) = - \frac{A}{\sqrt{\lambda}} + \frac{O(1)}{\lambda^{3/2}} = \frac{O(1)}{\sqrt{\lambda}}
\]

(2.58)

ifadesi elde edilir.

(2.57) ifadesinden \(n \pi \) ile değişen modified faz fonksiyonunun \((n+1) \)-inci özdeğerinin benzer bir yaklaşım elde edilir. Buradan,

\[
\varphi(b, \lambda_n) = - n\pi + \frac{O(1)}{\sqrt{\lambda_n}}
\]

olur.

Elde edilen bu son iki ifadeyi birbirinden çıkarır ve (2.53) özdeğisti ile karşılaştırırsak,

\[
\varphi(b, \lambda_n) - \varphi(a, \lambda_n) = - n\pi + \frac{O(1)}{\sqrt{\lambda_n}} = - \sqrt{\lambda_n}(b-a) + \frac{O(1)}{\sqrt{\lambda_n}}
\]

(2.59)

olur. Burada \(\lambda_n \to \infty \) olduğunda \(\lim_{n \to \infty} \frac{n\pi}{\lambda_n^{1/2}} = (b-a) \) veya \(\sqrt{\lambda_n} = K_n \) olur ki \(K_n \sim \frac{\pi}{(b-a)} \) biçimindeki sayıların bir dizisidir. (2.59) ifadesinden,

\[
\sqrt{\lambda_n} = \frac{n\pi}{(b-a)} + \frac{O(1)}{\sqrt{\lambda_n}} = \frac{n\pi}{(b-a)} + \frac{O(1)}{n}
\]

ifadesi bulunur ki ispat biter.

Sonuç 2.11.1. Bir regüler S–L sisteminin sıfırdan farklı özdeğerlerinin bir dizisi \(\lambda_n \) olsun. \(0 \) zaman

\[
\sum_{n=0}^{\infty} \lambda_n^{-2} < +\infty
\]

olur.
2.12. Özfonksiyonların Normalleştirilmesi

\[a < x < b \] aralığında verilen karesi-integrallenebilir

bir \(u(x) \) fonksiyonu, \(r(x) \) ağırlık fonksiyonuna bağlı olarak,

\[
\int_{a}^{b} u^2(x) r(x) dx = 1
\]

biçiminde normalleştirilir.

(2.46) S-L denkleminin çözümleri olan özfonksiyonlar için \(r(x) = 1 \) dir. Burada (2.46)-(2.47) regüler S-L sistemine çözümü olan özfonksiyonların normalleştirilmesini kosinüs fonksiyonlarının normalleştirilmesine benzer şekilde göstereceğiz.

Teorem 2.9. \(\alpha' \neq 0 \) ve \(\beta' \neq 0 \) olmak üzere (2.46)-(2.47) regüler S-L sisteminin normalleştirilmiş özfonksiyonlarının bir dizisi \(u_n(x) \) olsun \((n = 0, 1, 2, \ldots)\). O zaman,

\[
u_n(x) = \sqrt{\frac{2}{b-a}} \cos \left[\frac{\pi n (x-a)}{(b-a)} \right] + \frac{O(1)}{n}
\]

(2.60) olur.

İşpat: Bu teoremin ispatını üç aşamada yapacağız. Regüler S-L denkleminin \(\lambda_n \) özdeğere karşılık gelen \(u_n(x) \) özfonksiyonu, (2.48) dönüşümlerinden,

\[
u_n(x) = \frac{R(x, \lambda_n)}{\sqrt{\lambda_n - q(x)}} \cos \phi(x, \lambda_n), \ a < x < b
\]

(2.61) biçiminde olur.

(2.60) formülündeki sıraya göre, (2.61) ile verilen ifadedeki üç çarpanın her biri için n-inci terimlerinde farklı asimptotik formüller elde ederiz.

Yine bu teoremin ispatını aşağıda sıra ile vereceğimiz üç lemma vasıtasıyla yapacağız.
Lemma 2.12.1, \(\varphi(x, \lambda) \) teorem 2.3'in ispatındaki gibi verilsin. 0 zaman \(\lambda \to \infty \) olduğunda,
\[
\int_{a}^{b} \cos^2 \varphi(x, \lambda) dx = \frac{b-a}{2} + \frac{O(1)}{\lambda^{1/2}} \tag{2.62}
\]
olur.

İspat: (2.62) - de integral değişkeni olarak \(\varphi(x, \lambda) \) kullanılır ve (2.53) - den dolayı,
\[
\frac{dx}{d\varphi} = \frac{1}{d\varphi} = -\lambda^{-1/2} + O(1) \lambda^{-3/2}
\]
olduğu hatırlanırsa,
\[
\int_{a}^{b} \cos^2 \varphi(x, \lambda) dx = \int_{\varphi(a, \lambda)}^{\varphi(b, \lambda)} \cos^2 \varphi \frac{dx}{d\varphi} d\varphi
\]
\[
= \left[-\lambda^{-1/2} + O(1) \lambda^{-3/2} \right] \int_{\varphi(a, \lambda)}^{\varphi(b, \lambda)} \cos^2 \varphi d\varphi
\]
olur. Son integralin değeri kolayca hesaplanabilir. Bunun içi teorem 2.7'deki (2.53) ifadesi kullanılırsa,
\[
\int_{\varphi(a, \lambda)}^{\varphi(b, \lambda)} \cos^2 \varphi d\varphi = \frac{\varphi(b, \lambda) - \varphi(a, \lambda)}{4} \cos \frac{\varphi(b, \lambda) - \varphi(a, \lambda)}{2} = -\lambda^{1/2}(b-a) + O(1)
\]
bulunur. Bu son ifade bir öncekte yerine yazılır ve gerekli sadeleştirilmeler yapılırsa,(2.62) ifadesi elde edilir ki ispat biter.

İkinci olarak aradığımız sonuç ise, şu lemma ile verilir.

Lemma 2.12.2, Regüler (2.46) S–L denklemini sağlayan bir çözümü \(u(x, \lambda) \) olsun. 0 zaman \(\lambda \to \infty \) için,
\[
\left[\int_{a}^{b} u^2(x) dx \right]^{1/2} = R(a, \lambda) \lambda^{-1/4} \sqrt{\frac{b-a}{2}} \left[1 + \frac{O(1)}{\lambda^{1/2}} \right] + \frac{O(1)}{\lambda^{3/4}} \tag{2.63}
\]
olur.
İşpat: Teorem 2.7 ve (2.48)-deki ifadelerden dolayı $u,$ R-nin terimleri cinsinden yazılırsa,
\[
\int_a^b u^2(x)dx = [R(a, \lambda) + \frac{O(1)}{\lambda}]^2 \int_a^b [\lambda - q(x)]^{-1/2} \cos^2 \varphi \, dx
\]
olur.
\[
(\lambda - q)^{-1/2} = \lambda^{-1/2} + O(1) \lambda^{-3/2}
\]
olarak yazılabileceğinden, buyu yukarıdaki integralde yerine yazar ve (2.62) ifadesini de kullanarak gerekli sadeleştirilmeler yapılır,
\[
\int_a^b u^2(x)dx = [R(a, \lambda) + \frac{O(1)}{\lambda}]^2 \left[\lambda^{-1/2} + O(1) \lambda^{-3/2}\left[\frac{b-a}{2} + O(1) \lambda^{-1/2}\right]\right]
\]
\[
= \left[R(a, \lambda) + \frac{O(1)}{\lambda}\right]^2 \left[\frac{b-a}{2\lambda^{1/2}} + \frac{O(1)}{\lambda}\right]
\]
olur. Bulunan bu son ifadenin her iki tarafının karekökü alınırsa,
\[
\left[\int_a^b u^2(x)dx\right]^{1/2} = \left[R(a, \lambda) + \frac{O(1)}{\lambda}\right] \left[\frac{b-a}{2\lambda^{1/2}} + \frac{O(1)}{\lambda}\right]^{1/2}
\]
\[
= \frac{R(a, \lambda)}{\lambda^{1/4}} \sqrt{\frac{b-a}{2}} \left[1 + \frac{O(1)}{\lambda^{1/2}} + \frac{O(1)}{\lambda^{3/4}}\right]
\]
ifadesi elde edilir ki ispat biter.

Sonuc 2.12.2.1. Eğer lemma 2.12.2.de \(\int_a^b u^2(x, \lambda)dx = 1\) ise o zaman,
\[
R(a, \lambda) = \sqrt{\frac{2}{b-a}} \lambda^{1/4} \left[1 + O(1) \lambda^{-1/2}\right]
\]
(2.64)
olur.

İşpat: (2.62) formülü, nomalleştirilmiş bir çözümün uzunluk fonksiyonu ile,
\[
1 - \frac{O(1)}{\lambda^{3/4}} = \frac{R(a, \lambda)}{\lambda^{1/4}} \sqrt{\frac{b-a}{2}} \left[1 + \frac{O(1)}{\lambda^{1/2}}\right]
\]
eşitliğini sağlayacak biçimde verilir.
Burada \(R \) için çözüm yapılır ve kesrin asimptotik durumu dikkate alınsa, (2.64) ifadesi elde edilir.

Lemma 2.12.3. (2.46)-(2.47) regüler S-L sisteminin \(n \)-inci özdeğeri \(\lambda_n \) olsun \((\lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \ldots) \). \(\alpha' = 0 \) ve \(\theta' = 0 \) durumu hariç olmak üzere \(n \to \infty \) için,

\[
\cos \theta(x, \lambda_n) = \cos \frac{n\pi (x-a)}{(b-a)} + o(1) \lambda_n^{-1/2}
\]

(2.65)

olur.

İspat: Teorem 2.7 ve \(|\cos a - \cos b| \leq |a - b| \) eşitsizliğinden,

\[
\cos \left[-\sqrt{\lambda_n} (x-a) \right] - \cos \theta(x, \lambda_n) = o(1) \left[\sqrt{\lambda_n} (x-a) + o(x, \lambda_n) \right]
\]

\[
= o(1) \Theta(a, \lambda_n) + o(1) \lambda_n^{-1/2}
\]

bulunur. (2.58)-de \(\Theta(a, \lambda_n) = o(1) \lambda_n^{-1/2} \) olarak bulunmuştu. Buradan hareketle,

\[
\cos \theta(x, \lambda_n) = \cos \left[\sqrt{\lambda_n} (x-a) \right] + o(1) \lambda_n^{-1/2}
\]

(2.66)

elde edilir. Bu son ifadeye teorem 2.8.i uygulayalım. (2.55) formülü ve ortalama değer teoreminden,

\[
\cos \left[\sqrt{\lambda_n} (x-a) \right] - \cos \left[\frac{n\pi (x-a)}{(b-a)} \right] = o(1)n^{-1} = o(1) \lambda_n^{-1/2}
\]

olur. (2.66)-nin sağ tarafından bu son ifade yerine yazılsırsa, (2.65) formülü elde edilir ki ispat biter.

Şimdi bu ispatlardan sonra teorem 2.9.un ispatına devam edelim. (2.61)-deki üç çarpan chdkandar ilkini, birinci dereceden \((\lambda - q)^{-1/4} = \lambda^{-1/4} + o(1) \lambda^{-5/4} \) yaklaşıması ile sadeleştirilebiliriz. \(R(x, \lambda) \) çarpanı sonuç 2.12.2.1.den ve \(\cos \theta(x, \lambda_n) \) ise lemma 2.12.3.den hesaplandı. Bütün bu çarpanlar (2.61)-de yerine yazılar ve düzenlenirse,
\[u_n(x) = \sqrt{\frac{2}{b-a}} \cos \left(\frac{n \pi (x-a)}{b-a} \right) + O(1) \lambda_n^{-1/2} \]

olar. Son ifade \(\lambda_n^{-1/2} \sim O(1)n^{-1} \) olduğundan yerine yazılırsa teorem 2.9'un ispatı tamam olur.
III. BÖLÜM
GENEL AĞIRLIKLı STURM-LIOUVILLE PROBLEMELERİNİN
ÖZDEĞERLERİNİN VE SIFIRLARININ SAYISİNIN ASİMPTOTLARI

3.1. Giriş

[0, b] aralığı üzerinde,

\[(p(x)y')' + (\lambda r(x) - q(x))y = 0\] (3.1)

biçiminde verilen genel ağırlıklı Sturm-Liouville denkleminin trivial olmayan bir çözümünün sıfırlarının sayısını \(N(\lambda)\) ile gösterelim. \(0 < b \leq \infty\) olmak üzere, (3.1) diferensiyel denklemindeki \(p, q, r\) katsayı-fonksiyonları \([0, b] \rightarrow \mathbb{R}\) ye tanımlı ve \(\frac{1}{p}\), \(q, r \in L(0, b)\) dir.

Gohberg ve Krein (0, b) aralığı üzerinde hemen hemen her yerde (h.h.h.) \(p(x) > 0, r(x) > 0\) olmak üzere \(\lambda \rightarrow \infty\) için

\[N(\lambda) \sim \pi^{-1} \sqrt{\lambda} \int_0^b \sqrt{\frac{r(x)}{p(x)}} \, dx\] (3.2)

biçimindeki \(N(\lambda)\) ifadesini (3.1) denkleminin asimptotik hesapı olarak belirttiler [4]. Ancak bu durum daha önce diğer matematikçiler tarafından da tespit edilmiştir.

Gohberg ve Krein sözkonusu bu çalışmalarında (3.1) denkleminin katsayı-fonksiyonlarını yine \(L(0, b)\) üzerinde almışlar ve bu fonksiyonların sağlaması gereken şartları en az indirerek (3.2)-nin geçerli olduğunu göstermişlerdir.

Burada \(r(x)\) her iki işaret de almak üzere, modified prüfer dönüşümü kullanılarak (3.2)-nin direkt bir ispatı verilecektir.

\(f_+\) ile \(f-\) in pozitif kısmını belirtmek üzere, Jörgens (3.1) diferensiyel denklemi için \(N(\lambda)\) ifadesini, \(\lambda \rightarrow \infty\) için,
\[N(\lambda) \sim n^{-1} \sqrt{\lambda} \int_{0}^{b} \frac{r(x)}{\sqrt{p(x)}} \, dx \quad (3.3) \]

ve \(\lambda \to -\infty \) için

\[N(\lambda) \sim n^{-1} \sqrt{\lambda} \int_{0}^{b} \frac{r(x)}{\sqrt{p(x)}} \, dx \quad (3.4) \]

olarak belirtmiştir [3].

Eğer \((0, b)\) aralığında h.h.h.de \(p(x) \) bir tek işaret a-
lıyor ise (bu işaret pozitif olarak alınır), (3.3) ve (3.4)
integralleri sınırlıdan farklıdır. Genel olarak \(p(x) \)-in is-
aret değişimminin sınırlı olmadığı (veya sınırlı olduğu) du-
rumlarda da (3.3) ve (3.4) integralleri geçerlidir.

Sonlu \(\lambda \) için \(N(\lambda) = +\infty \) olabileceği
den, eğer \(p(x) \)-in
sonsuza kadar işaret değişimleri (3.3) veya (3.4)
ge-
çerli olmayabilir. Bu nedenle için \(p(x) \)-i, \(p(x) = \frac{\int_{a}^{x} ds}{p(s)} \)
olarak seçersek \((0, b)\) aralığında \(p(x) \)-in işaretli sonsuz
defa değişir.

\((3.1)\) diferensiyel denkleminde \(q(x) = 0, \lambda = 0 \) ise, 0
zaman \(y(x) = p(x) \) çözümüdür.

Burada \(r(x) \)-in işaret değişimine herhangi bir sınırlama
getirilmemek üzere, \(p(x) \)-in işaret değişimini sonlu da olsa,
Drichlet problemine benzer şekilde oluşturuluran (3.1)-in
spektrumu tüm kompleks düzlemi doldurur.

Örneğin, \(q(x) = 0 \) olmak üzere \(0 < x < 1 \) aralığında \(p(x) = 1 \)
ve \(r(x) = 1, -1 < x < 0 \) aralığında da \(p(x) = -1 \) ve \(r(x) = -1 \) ola-
arak verilsin. \(0 \) zaman \(p'y' \) -nü n her durum için, (3.1) diferen-
siyel denkleminin çözümü olan özfonksiyonlar \((0, b)\) aralığın-
da mutlak sürekli bir. Bundan dolayı \(\forall \lambda \in \mathbb{C} \) ve \(-1 < x < 1 \) için
\(y(-1, \lambda) = 0 = y(1, \lambda) \) olmak üzere \(y(x, \lambda) = \sin \left[(1 - |x|) \sqrt{\lambda} \right] \) fonk-
siyonu (3.1) diferensiyel denklemini sağlar.
Burada \(\lambda \neq 0 \) için \(y(x, \lambda) \) bir özfonksiyondur.

Öteyandan, eğer \((0, b)\) aralığında \(h, h, \lambda, p(x) > 0\) ve \(r(x) \) her iki işaretini de alıyorsa (3.1) diferensiyel denklemi tanımsızdır. Homojen ayrık \(x=a \) ve \(x=b \) sınır şartları için (3.1) diferensiyel denkleminin \(\lambda_n^+ \) özdeğerlerinin asimptotik gösterimi \(n \to +\infty \) olduğunda,

\[
\lambda_n^+ \sim \frac{n^2 \pi^2}{\left[\int_0^b \sqrt{\frac{r(x)}{p(x)}} \, dx \right]^2}
\]

(3.5)

olar ve \(\lambda_n^- \) negatif özdeğerlerinin asimptotik gösterimi ise \(n \to -\infty \) olduğunda,

\[
\lambda_n^- \sim \frac{n^2 \pi^2}{\left[\int_0^b \sqrt{\frac{r(x)}{p(x)}} \, dx \right]^2}
\]

(3.6)

olar [6].

Sonuç olarak \(y(x, \lambda) \), (3.1) diferensiyel denkleminin bir çözümü olmak üzere, (3.5) ve (3.6) ifadelerinden dolayı sabit \(x \) için \(\lambda \)-nin tam öz fonksiyonudur ve derecesi de 1/2 dir.

3.2. (3.1) için \(N(\lambda) \) -nin Asimptotları

Aşağıdaki lemma ve teoremlerde \(\frac{1}{p}, q, r \in L(0, b) \) ve \(\frac{r}{p}, (0, b) \) aralığında her iki işaretini de almak üzere,

\[
\int_0^b \sqrt{\frac{r(x)}{p(x)}} \, dx > 0
\]

(3.7)

olduğu kabul edilecektir.

Lemma 3.2.1.a) \((0, b)\) aralığında \(h, h, \lambda, p(x) > 0\) ve \(r(x) \geq 0\) olsun. \(0\) zaman (3.1) diferensiyel denklemi için \(\lambda \to +\infty \) olduğunda

-55-
\[N(\lambda) \sim \pi^{-1} \sqrt{\lambda} \int_{0}^{b} \sqrt{\frac{p(x)}{p(x)}} \, dx \quad (3.8) \]

olur.

b) \((0,b)\) aralığında h.h.h. \(p(x) > 0\) ve \(r(x) \geq 0\) olsun. \(0 \leq \alpha\) ve \(\beta < \pi\) için, sınır şartları

\[y(0)\cos\alpha - (py')(0)\sin\alpha = 0 \quad (3.9) \]
\[y(b)\cos\beta + (py')(b)\sin\beta = 0 \quad (3.10) \]

bölümünde verilmek üzere, \((3.1)-(3.9)-(3.10)\) sınır-değer problemini gözönüne alalım. Ayrıca \((3.1)\) diferensiyel denkleminde \(\lambda = \lambda_n\) konularak \((0,b)\) aralığındaki her bir \(n\) sıfırına bir özfonksiyon karşılık gelecek biçimdeki \(\lambda_n\) özdeğerlerinin dizisi \(\{\lambda_n\}\) ile gösterilsin. \(0\) zaman \(n \to \infty\) için,

\[\lambda_n \sim \frac{n_{2,n}^2}{\left(\int_{a}^{b} \frac{r(x)}{p(x)} \, dx \right)^2} \quad (3.11) \]

olur.

İşpat: a) Burada \(p(x) \equiv 1\) durumunda ispat yapılmasını yerlerlidir. \((3.1)\) diferensiyel denkleminde \(x\) serbest değişkeni için \(x \rightarrow \zeta(x) = \int_{0}^{s} \frac{ds}{p(s)}\) değişken dönüşümü yapılrsa,

\[y'' + (\lambda x p - p q) y = 0 \ , \quad (' = \frac{d}{dx}) \]

olur. Bu son ifade için \(p \equiv 1\) kabulü altında \((3.8)\) - in ispatı yapılacaktır. Buradan hareketle \((3.1)\) denkleminde de \(p(x) \equiv 1\) olarak kabul edilebilir.

Şimdi \(h \in C^1([0,b], \mathbb{R}^+)\) olarak verilsin (yani \(x \in [0,b]\) için \(h(x) > 0\) olsun). Ayrıca \(y(0,\lambda) = 1, y'(0,\lambda) = 0\) olsun. Prüfer açısı \(\theta = \theta(x,\lambda)\) ise,
\[
\tan \theta = - \frac{y'}{yh\sqrt{\lambda}}, \quad \lambda > 0
\]
(3.12)

biçiminde tanımlansın. O zaman \(\theta = \theta(0, \lambda) = 0 \) ve

\[
\theta' = h\sqrt{\lambda} - \sqrt{\lambda}(\frac{\pi}{h} - h)\cos^2 \theta - \frac{1}{2}\frac{h'}{h}\sin2\theta - \frac{a}{h\lambda\sqrt{\lambda}}\cos^2 \theta
\]
(3.13)

olur. \(y \)-nin sıfırlarının \(\theta \) artması aldığına dikkat edelim.

Böylece

\[
N(\lambda) = \pi^{-1}\theta(b, \lambda) + o(1), \quad \lambda > 0
\]
(3.14)

olur. (3.8) ve (3.14) göze alınırsa, (3.14) ifadesinin "den bağımsız olduğu" görülür (\(\in C^1 \) ve \(h(x) > 0 \) olduğundan).

Her \(\varepsilon > 0 \) için,

\[
\int_0^b |h - \sqrt{\tau}|ds < \varepsilon, \quad \int_0^b \left| \frac{\pi}{h} - h \right|ds < \varepsilon
\]
(3.15)

eşitsizliğini gerçekleyecek biçimde bir \(h \)-nin seçilebileceği göstermek yeterlidir. \(h \) -yi bir \(\varepsilon > 0 \) sayısına bağlı olarak tekrar belirleyelim. Önce

\[
\int_0^b |\sqrt{\tau} - w|^2ds < b\varepsilon^2, \quad w \geq 0
\]
(3.16)

olacak şekilde bir \(w \) fonksiyonu seçelim. Bu \(w \) fonksiyonunu \((C,1)\)-de \(\sqrt{\tau} \)-nin Fourier açılımının kısmi toplamı olarak kabul edebiliriz. Bu kabulde \(w, \sqrt{\tau} \)-ye bağlı olduğundan negatif olamaz.

\[
w \in C^1 \quad \text{ve} \quad w > 0 \quad \text{olmak üzere,}
\]

\[
h = w + \varepsilon
\]
(3.17)

eşitliğini sabit bir \(w \)-ye bağlı olarak seçelim. O zaman

\[
\int_0^b |h - \sqrt{\tau}|ds \leq 2b\varepsilon
\]
(3.18)

olur. Ayrıca

\[
\left| \frac{\pi}{h} - h \right| \leq \frac{\sqrt{\pi}}{h} |\sqrt{\tau} - h| + |\sqrt{\tau} - h|
\]
(3.19)
olarak yazabiliriz. Bu ifadenin sağındaki ikinci terimin integrali (3.18) ile hesaplandı. Şimdi de (3.19) eşitsizliğinin sağındaki ilk terimin integralini hesaplayalım.

Bunun için \(I_1 \) ve \(I_2 \) kümelerini

\[
I_1 = \left\{ x \in [0, b] : w(x) \geq \sqrt{s} \right\}
\]

\[
I_2 = \left\{ x \in [0, b] : w(x) < \sqrt{s} \right\}
\]

biçiminde tanımlayalım. \(I_1 \) de \(h(x) > \sqrt{s} \) dir. Schwarz eşitsizliğinin uygulanmasıyla,

\[
\int_{I_1} \frac{\sqrt{r}}{h} |\sqrt{r} - h| \, ds \leq \frac{||r||_{L^1}^{1/2}}{s^{1/2}} \left\{ \int_0^b \left| \sqrt{r} - w - \sqrt{s} \right|^2 \, ds \right\}^{1/2}
\]

elde edilir ki burada \(||r||_{L^1} \), \((0, b)\) aralığında \(r \) nin \(L^1 \) normudur. Yukarıdaki ifadeye şimdi de Minkowski eşitsizliğini uygularsak,

\[
\int_{I_1} \frac{\sqrt{r}}{h} |\sqrt{r} - h| \, ds \leq 2(5 \, ||r||_{L^1} \, b)^{1/2}
\]

(3.20)

bulunur. \(I_2 \) üzerinde \(h(x) \geq \sqrt{s} \) dir. Bu şekilde (3.19) un sağıldığı ilk terimin integrali \(I_2 \) üzerinde alınırsa (Minkowski eşitsizliğinden faydalanarak),

\[
\int_{I_2} \frac{\sqrt{r}}{h} |\sqrt{r} - h| \, ds \leq \frac{1}{5} \left\{ \int_{I_2} r \, ds \right\}^{1/2} (5\sqrt{b})
\]

(3.21)

olur. (3.21) eşitsizliğinin sağındaki integrali

\[
\int_{I_2} r \, ds \leq 2 \int_{I_2} (\sqrt{r} - w)^2 \, ds + 2 \int_{I_2} w^2 \, ds
\]

biçiminde yazılabileceğinden,

\[
\int_{I_2} r \, ds \leq 2bs^2 + 2bS
\]

(3.22)

elde edilir.
En son elde ettigimiz (3.22)-yi (3.21)-de yerine yazarak (3.20) ve (3.18) ifadeleriyle toplarsak,(3.19) un integrali,
\[
\int_{0}^{b} \left| \frac{2}{h} \right| ds \leq 2\delta + 2(\delta \|r\|_{1} b)^{1/2} + \sqrt{b(2\delta^{2} + b\delta)}^{1/2} \tag{3.23}
\]
olur.Böylece \(\varepsilon > 0 \) için,
\[
\max \{2\delta, 2\delta + 2(\delta \|r\|_{1} b)^{1/2} + \sqrt{b(2\delta^{2} + 2\delta)}^{1/2} = 2\delta < \frac{\varepsilon}{4}
\]
esitsizliği sağlanacak biçimde bir \(\delta > 0 \) seçeriz.Böylece \(h - yi \leq 0 \) için yukarıdaki gibi tanımlarız.

(3.13) ve (3.15) ifadelerinden,
\[
\left| \int_{0}^{b} \sqrt{r} ds - \frac{\theta(b, \lambda)}{\lambda^{1/2}} \right| < \frac{\varepsilon}{2} + \frac{1}{\lambda^{1/2}} \int_{0}^{b} \left| h_{i} \right| ds + \frac{1}{\lambda} \int_{0}^{b} ds \tag{3.24}
\]
olarak bulunur.Burada yeteri derecede büyük her \(\lambda \) için,
(3.24) esitsizliğinin sağladığı son iki terimin toplamı \(\frac{\varepsilon}{2} \)
den küçüktür. Bu ise (3.14) ifadesinin hesaplanması demektir.

İspat: b) Yukarıda ispatını yaptığımız lemma 3.2.1.a) da \(N(\lambda_{n}) = n \) yazarak (3.8) –den \(\lambda_{n} \) çekilirse (3.11) elde edilir ki ispat biter.

Teoreml 3.2.2 (Jörgens Teoremi): Her hangi bir \((a_{i}, a_{i+1}) \) aralığında \(i = 0,1,2,\ldots,n \) için,\(a_{0} = 0 \) ve \(a_{n+1} = b \) ve \(p(x) \) hemen hemen her yerde tek işaret almak üzere,
\[
(0,b) = \bigcup_{i \equiv 0}^{n} (a_{i}, a_{i+1}) \text{ olsun.} 0 \text{ zaman (3.1) diferensiyel denklemünün asımtotik hesabı (3.3) ve (3.4) ile verilir.}
\]

İspat: Sturm-Liouville problemlerinde ilk dikkate alanığımız husus, sonlu \(\lambda \)-lar için \(N(\lambda) \) –nin sonlu olduğudur. Burada \((0,b) \) aralığı üzerinde h.h.h. \(p(x) > 0 \) olması durumunda
(3.3) ve (3.4) ifadelerinin geçerli olduğunu ispatlayacağiz (İkinci durum olan (0, b) aralığında h.h.h. p(x) < 0 olması halinde de birinci durumda yapılan ispat geçerlidir).

Öteyandan \((-\lambda)(-r(x)) = \lambda r(x)\) biçiminde yazılabileceğinden (3.3) ve (3.4) ifadelerinden bir tanesinin ispatının yapılması yeterlidir.

Şimdi (0, b) aralığında h.h.h. p(x) > 0 olması halinde (3.3) -ün geçerli olduğunu göstereceğizden p(x) = 1 olarak alabiliriz. Bu kabuller altında (3.1) denklemi yerine,

\[y'' + (\lambda r(x) - q(x))y = 0 \]

(3.25).

denkleminin ispatının yapılması yeterlidir. Lemma 3.2.1.a nin ispatından \(\lambda \to \infty\) için \(N(\lambda)\) ifadesi,

\[N(\lambda) \sim \pi^{-1} \sqrt{\lambda} \int_{0}^{b} \sqrt{r_+(x)} \, dx \]

(3.26)

olarak elde edilir (p(x) = 1 olarak alınındığından). Yine lemma 3.2.1.a) nin ispatında h -yi tanımladık ve \(\theta -\gamma\) (3.12) ve (3.13) ifadelerinden elde ettik. Bu ifadeler (3.14) ifadesinde yerine yazılırsa, \(\lambda \to \infty\) için

\[\theta(b, \lambda) \sim \sqrt{\lambda} \int_{0}^{b} \sqrt{r_+(x)} \, dx \]

olduğunu göstermemiz gerekir. Ancak lemma 3.2.1.a) ve Sturm-Karşılıştırma teoreminden,

\[\lim_{\lambda \to \infty} \sup \lambda^{-1/2} \theta(b, \lambda) \leq \int_{0}^{b} \sqrt{r_+(x)} \, dx \]

(3.27)

olur. Böylece \(\varepsilon > 0\) için,

\[\lim_{\lambda \to \infty} \inf \lambda^{-1/2} \theta(b, \lambda) \geq \int_{0}^{b} \sqrt{r_+(x)} \, dx - \varepsilon \]

(3.28)

ifadesini sağlayacak şekilde bir h -nin seçilebileceğini göstermeliyiz.
\[\mathcal{S} > 0 \] olmak üzere \(r_+ \), \(r_- \) ve \(w_+ \), \(w_- \) fonksiyonlarını seçelim. Öyle ki,

\[w_+(x) \geq 0, \quad w_-(x) \geq 0 \quad (3.29) \]

olarak verilsin. O zaman

\[\int_0^b |\sqrt{r_+} - w_+|^2 ds \leq b\mathcal{S}^2 \quad (3.30) \]

ve

\[\int_0^b |\sqrt{r_-} - w_-|^2 ds \leq b\mathcal{S}^2 \quad (3.31) \]

olur. Burada \(h = w_+ + \mathcal{S} \) olmak üzere \(J_1, \ldots, J_4 \) kümelerini şöyle tanımlayalım.

\[J_1 = \{ x \in [0, b] : w_+(x) \leq \sqrt{\mathcal{S}} \} \]

\[J_2 = \{ x \in [0, b] : w_+(x) > \sqrt{\mathcal{S}}, \; w_-(x) > \sqrt{\mathcal{S}}, \; r(x) > 0 \} \]

\[J_3 = \{ x \in [0, b] : w_+(x) > \sqrt{\mathcal{S}}, \; w_-(x) > \sqrt{\mathcal{S}}, \; r(x) < 0 \} \]

\[J_4 = \{ x \in [0, b] : w_+(x) > \sqrt{\mathcal{S}}, \; w_-(x) \leq \sqrt{\mathcal{S}} \} \]

\(w_+(x) \) polinomlar olarak seçilebileceğinden \(J_1 \) ve \(J_4 \) aralıkların sonlu toplamından oluşur. \(J_4 \) üzerinde (3.13)-ü uygularsak (\(J_4 \)-ü oluşturan aralıkların her biri diğerinin tümleyeni olması şartıyla), \(\cos \theta = 0 \) iken \(\theta(x, \lambda) \) arttığından \(\theta(x, \lambda) \) en fazla \(2\pi \) kadar azalır. Böylece

\[\frac{\theta(x, \lambda)}{\lambda^{1/2}} \geq \int_{J_4} h \; ds - \int_{J_4} |\sqrt{r} - h| \; ds - O(\lambda^{-1/2}) \quad (3.32) \]

olur. Burada uygun \(h \) ve verilen \(\varepsilon > 0 \) için,

\[\left| \int_{J_4} h \; ds - \int_0^b \sqrt{r_+} \; ds \right| < \frac{\varepsilon}{2} \quad (3.33) \]
ve
\[\int_{J_4^+} |F - h| ds < \frac{\varepsilon}{2} \] (3.34)

olduğunu göstermeliyiz. (3.18) ifadesindeki düşünce tarzı (3.30) -a uygulanırsa,
\[\int_0^b |\sqrt{F} - h| ds < 2b \varepsilon \] (3.35)
eşitsizliği elde edilir. Burada (3.33) -ün sol tarafı,
\[2b \varepsilon + \sum_{i=1}^3 \int_{J_i} h \, ds \] (3.36)
ifadesi ile sınırlı olduğundan bu ifade
\[5b \varepsilon + \sum_{i=1}^3 \int_{J_i} w_+ \, ds \] (3.37)
ille büyütülürse buradan
\[\int_{J_4^+} w_+ \, ds < b \sqrt{\varepsilon} \] (3.38)
olur.

\(J_2 \) üzerinde \(|\sqrt{F} - w_-| > \sqrt{\varepsilon} \) olduğundan, \(\mathcal{M}(\cdot) \) Lebesgue ölçümünü göstermek üzere, (3.31) -in değeri,
\[\mathcal{M}(J_2) \leq b \varepsilon \] (3.39)
olur. Benzer şekilde
\[\mathcal{M}(J_3) \leq b \varepsilon \] (3.40)
olur. Böylece
\[\int_{J_4^+} w_+ \, ds \leq \sqrt{b \varepsilon} \left(\int_{J_2} w_+^2 \, ds \right)^{1/2} \]
\[\leq \sqrt{b \varepsilon} \left(\int_{J_2} |w_+ - \sqrt{F} + \sqrt{F} |^2 \, ds \right)^{1/2} \]
\[\leq \sqrt{b \varepsilon} \left(2b \varepsilon^2 + 2 \| \pi \| \right)^{1/2} \] (3.41)
olur. Aynı şekilde bu işlemler \(J_2 \) aralığı içinde yapılrsa

\[
\int_{J_2} w_+ ds \leq \sqrt{5} \left(2b_5^2 + 2\|r\|_1 \right)^{1/2}
\]

(3.42) olarak bulunur.

(3.35) ve (3.37) ifadeleri dikkate alıarak, (3.38), (3.41) ve (3.42) ifadeleri birleştirilirse,

\[
\left| \int_{J_4} h ds - \int_0^b \sqrt{r_+} ds \right| \leq 5b_5^2 + \sqrt{5} + 4\sqrt{5} (b_5^2 + \|r\|_1)^{1/2}
\]

(3.43) eşitsizliği elde edilir.

Şimdi (3.34) ifadesinin sol tarafını hesaplayalım. Bunun için,

\[
|r_+^{-1} - h| \leq |r_+^{-1} - h| + |r_+^{-1}|
\]

eşitsizliği yazılıp ve integral alınırsa,

\[
\int_{J_4} |r_+^{-1} - h| ds \leq 5^{-1/2} \int_{J_4} r_- ds + \int_{J_4} |r_+^{-1} - h| ds
\]

(3.44) olur. Bu eşitsizliğin sağındaki ilk integralde \(r_- \) yerine

\[
r_- = |\sqrt{F} - w_+ + w_-|^2
\]

yazarak bu ifadeye Minkowsky eşitsizliği uygulanırsa,

\[
\int_{J_4} r_- ds \leq 2b_5^2 + 2\sqrt{5} \mu(J_4)
\]

(3.45) olarak bulunur. Bu ise (3.44) eşitsizliğinin sağındaki ilk terimin,

\[
2\sqrt{5}^{3/2} + 2b_5^{1/2}
\]

ile sınırlı olması demektir.

(3.19) ifadesinde \(r \) yerine \(r_+ \) koyup, \(J_4 \) üzerinde \(h > \sqrt{5} \) olduğu dikkate alınırsa, (3.44) ifadesinin sağındaki ikinci integral,
\[\int_{l_4} |r_+ h^{-1} - h| ds \leq 2(b \sqrt{\|r_+\|_1})^{1/2} + \int_{l_4} |\sqrt{r_+} - h| ds \quad (3.46) \]

olarak bulunur. \((3.18) \) eşitsizliğinden dolayı, \((3.46) \) -nin sağındaki integral,
\[\int_0^b |\sqrt{r_+} - h| ds \leq 2b \sqrt{b} \quad (3.47) \]
olarak hesaplanır.

Burada \((3.44) \) eşitsizliğinin sağındaki integrallerin değerleri yerlerine yazılırsa,
\[\int_{l_4} |r_+ - h| ds \leq 2b \sqrt{b} (\sqrt{b} + 1) + 4b \sqrt{b} + 2(b \sqrt{b} \|r_+\|_1)^{1/2} \quad (3.48) \]
ifadesi elde edilir.

Böylece verilen bir \(b > 0 \) için uygun bir \(\varepsilon > 0 \) bulunur. Üyelik \((3.43) \) ve \((3.48) \) eşitsizliklerinin sağındaki sayıların en büyükü \(\varepsilon \) den küçük olur. \(\varepsilon \) halde \((3.33) \) ve \((3.34) \) eşitsizlikleri sağlanır. Buradan \((3.28) \) ifadesine varılır ki ispat tamam olur.

Teorema 3.2.3. Verilen bir \((0, b) \) aralığında h.h.h. \(p(x) > 0 \) olsun. \(\varepsilon > 0 \) zaman \((3.1) \) denklemi ile \((3.9)-(3.10) \) sınır şartlarından oluşan sınır-değer probleminin lemma \(3.2.1.b \) ile verilen \(\{ \lambda_n \} \) reel özdeğerlerinin dizisi iki yön-lü sonsuzluga sahiptir. Öyleki bu özdeğerlerin asimptotik gösterimi \(n \to \infty \) için,
\[\lambda_n \sim \frac{n^{2/2}}{\int_0^b \sqrt{\frac{p(x)}{\sqrt{p(x)}}} dx} \quad (3.49) \]
biçimindedir.
İspat: (3.1) diferensiyel denkleminin (3.9) sınır şartını sağlayan bir çözümü \(y \) olmak üzere, \(p = 1 \) için Prüfer açısı \(\tan \theta = \frac{x}{y} \) biçiminde tanımlansın. Bu durumda \(\theta \) açısı,
\[
\theta' = \cos^2 \theta + (\lambda r - q)\sin^2 \theta
\]
denklemini sağlasın ve \(y ' \) nin bir sıfırda artsisı, Böylece
\[
N(\lambda) = \pi^{-1} \Theta(b, \lambda) + O(1)
\]
olur. Fakat \(\lambda \to +\infty \) için \(N(\lambda) \to +\infty \) olduğunu biliyoruz. Bu sebeple \(n \in \mathbb{N} \) ve \(\Theta(b, \lambda) = \beta + n\pi \) olmak üzere, yeteri derecede büyük her \(n \) ve \(\lambda > 0 \) için enaz bir çözümü sahiptir. \(O \) halde (3.1) denkleminin \(\lambda \) bir özdegeri olmak üzere, bu özdegerine karşılık gelen özfonksiyon enaz \(n \)-tane sıfıra sahip olmalıdır.

\((0, b)\) aralığında \(n_H > 0 \) olmak üzere, \(n \geq n_H \) için bir özfonksiyon \(n \)-tane sıfıra sahip ise tamdır denir.

Benzer bir yorumda \(\lambda \to -\infty \) için getirilir. Bundan dolayı \(\lambda \) özdegerleri yönlü bir şekilde sıralanabilir ki o zaman \(y(x, \lambda_n) \) özfonksiyonu \((0, b)\) aralığında tam \(n \)-tane sıfıra sahip olur. Böylece \(p(x) \equiv 1 \) için teoremin birinci iddiası ispatlanmış olur. İkinci iddia ise lemma 3.2.1.b) den dolayı açıklıdır.

Uyarı 3.2.4.a (3.1) diferensiyel denkleminin bir çözümü olan \(y(x, \lambda) \), (3.8) ve (3.48) ifadelerinden de anlaşılabileceğini asere, sabit \(x \) için \(\lambda \) nin bir fonksiyonudur ve derecesi de 1/2 olur.

b) \(n \) bir tam sayı ve \(n \geq 1 \) olmak üzere, teorem 3.2.2. nin ispatında kullanılan yöntemler,
\[
(p(x)y')' + \left[a_n(x)\lambda^n + a_{n-1}(x)\lambda^{n-1} + \ldots + a_1(x)\lambda + a_0(x) \right] y = 0, (3.50)
\]

-65-
biçiminde verilen diferensiyel denklem ile sınır şartlarından oluşan sınır-değer problemleri için de uygulanabilir.

3.3. (3.50) İçin $N(\lambda)$ -nin Asimptotları

Özel bir şart verilmekle bu konuda $\frac{1}{p}, a_i \in L(0,b)$, $i=0,1,2,...,n$ olmak üzere, $\frac{a_n}{p}$ -nin her iki işaretli de alması durumunda

$$\int_0^b \sqrt{\frac{a_n(x)}{p(x)}} \, dx > 0$$

(3.51)

olduğu kabul edilecektir.

Lemma 3.3.1.a) Verilen bir $(0,b)$ aralığı üzerinde $p(x) > 0$ ve $a_n(x) \geq 0$ olsun. u zaman (3.50) diferensiyel denklemi için $N(\lambda)$ -nin asimptotik gösterimi,

olduğunda,

$$N(\lambda) \sim \frac{\lambda^{n/2}}{\pi} \int_0^b \sqrt{\frac{a_n(x)}{p(x)}} \, dx$$

(3.52)

elde edilir.

b) $p,a_i \in C[0,b]$ ve $[0,b]$ aralığında $a_n(x) > 0$ olduğunda $p(x) > 0$ olarak verilsin. u zaman (3.50) diferensiyel denklemi ve (3.9)–(3.10) sınır şartlarından oluşan sınır-değer problemi sadece $+\infty$ da sonsuz sayıda pozitif özdeğerlere sahiptir. Bu özdeğerler $\lambda = \lambda_m$ diye sınıflandırılabileceğinden $(0,b)$ aralığındaki her m sordu tam olarak bir tane özfonksiyon karşılık gelir. *yet m yeteri derecede büyüülürse*, yani $m \to +\infty$ için

$$\lambda_m \sim \frac{m^{2/n}}{\left\{ \int_0^b \sqrt{\frac{a_n(x)}{p(x)}} \, dx \right\}^{2/n}}$$

(3.53)

olur.
Ispat a) Bundan önceki teoremlerin ispatlarında olduğu gibi, burada da genelliği bozmaksızın \(p(x) \equiv 1 \) olarak kabul edeceğiz. Bu ispat lemma 3.2.1.a) nın ispatının bir genellemesidir. Bu durumda (3.50) diferensiyel denkleminin bir \(y(x,\lambda) \) çözümü, sabit \(x \) için \(\lambda \)-nin tam bir fonksiyonudur ve derecesi de \(1/2 \) olur.

Lemma 3.2.1.a) nın ispatını yaparken \(h \in C^1(0,b) \) için \(h > 0 \) olduğunu gösterdik ve Prüfer açısını,

\[
\tan \Theta = \frac{y'}{y} = -\frac{\lambda'}{y h^{n/2}}, \quad \lambda > 0 \tag{3.54}
\]

biçiminde tanımladık.

(3.50) diferensiyel denklemi için \(y \)-nin katsayısı olan \(q(x,\lambda) \) -yi yazalım. O zaman

\[
\theta' = h\lambda^{n/2} + \left[\frac{a}{h^{n/2}} + h\lambda^{n/2} \right] \cos^2 \Theta - \frac{h' \sin 2\Theta}{2h} \tag{3.55}
\]

olur. (3.55) ifadesi düzenlenerek yeniden yazılırsa,

\[
\frac{\theta'}{\lambda^{n/2}} = h + \frac{a_n - h}{h} \cos^2 \Theta - \frac{h' \sin 2\Theta}{2h} + \cos^2 \Theta \left[a_{n-1} h^{-1}\lambda^{-1} + a_{n-2} h^{-1}\lambda^{-2} + \ldots + a_0 h^{-1}\lambda^{-n} \right]
\]

bulunur. Burada \(y \)-nin bir sıfırında \(\Theta \) artar. Böylece (3.14) ifadesini tekrar yazabiliriz. Buradan da lemma 3.2.1.a) nin ispatında olduğu gibi her \(\varepsilon > 0 \) için,

\[
\int_0^b |h - \sqrt{a_n} s| ds < \frac{\varepsilon}{4}, \quad \int_0^b |a_n h^{-1} - h| ds < \frac{\varepsilon}{4} \tag{3.56}
\]

eşitsizliklerini gerçekleyen enaz bir \(h \in C^1(0,b) \) vardır ve \(h > 0 \) dir. Bunu göstermek için, yine lemma 3.2.1.a) nin ispatında olduğu gibi \(\delta > 0 \) için \(h - y \approx w + \delta \) biçiminde tanımlayalım. Burada \(w(x) \geq 0 \) ve
\[\int_0^b \left| \sqrt{a_n} - w \right|^2 ds < b5^2 \]

eşitsizliğini gerçekleyen bir polinomdur. Buradan itibaren yapılacak işlemler lemma 3.2.1.a) nin ispatında yapılanların bir tekrarı olacağını ispat tamam olur.

b) Yukarıda lemma 3.2.1.b) nin ispatında yaptığımız gibi, lemma 3.3.1.a) ile verilen (3.52) ifadesinde \(N(\lambda_m') = m \) koyar ve buradan \(\lambda_m - i \) çekersek (3.53) ifadesini elde ederiz ki ispatlanması istenen de budur.

Theorem 3.3.2. (3.50) diferensiyel denklemindeki \(p(x) \) katsayı fonksiyonu Jörgens teoremindeki şartları sağlasın. O zaman \(\lambda \to +\infty \) için
\[
N(\lambda) \sim \frac{\lambda n/2}{n} \int_0^b \frac{a_n}{p(x)}^n dx
\]
(3.57)

ve \(\lambda \to -\infty \) için,
\[
N(\lambda) \sim \frac{(-\lambda)^{n/2}}{n} \int_0^b \frac{a_n}{p(x)}^n dx
\]
(3.58)

olur.

Şimdi de \([0,b]\) aralığı üzerinde verilen
\[-y'' + q(x)y = \lambda \left\{ i(g(x)y)' + ig(x)y' + w(x)y \right\} \]
(3.59)

biçimindeki âdi simetrik diferensiyel denklemini göz önüne alalım. Burada (3.59) denklemi ile verilen \(q,g,w \) reel değerli katsayı fonksiyonları \(g \in AC[0,b] \) ve \(q,g,w \in L(0,b) \) olarak verilir. (3.59) diferensiyel denklemi üzerinde umumiyetle Everitt çalışmıştır [9]. Yine bu denklem üzerinde ilk değişken dönüşümünü Mingarelli uygulamıştır [7].

İspat: \([0,b]\) aralığı üzerinde h.h.h. \(p(x) > 0 \) olduğunu kabul edelim.
Gerçekten p(x) ≡ 1 olmak üzere,öl lemma 3.3.1.a) nin ispatındaki gibi tanımlanır ve gerekli düzenleme ve değişiklikler yapılırsa,teorem 3.2.2'nin ispatına benzer biçimde yapılır.

\[y(x,\lambda) = z(x,\lambda) \exp\left(-i\lambda \int_0^x g(s)ds\right) \] \hspace{1cm} (3.60)

biçiminde seçilirse,o zaman (3.59) diferensiyel denklemi

\[z'' + \left[g^2(x)\lambda^2 + w(x)\lambda - q(x)\right]z = 0 \] \hspace{1cm} (3.61)

diferensiyel denkleme dönüştür.

Eğer (3.61) diferensiyel denklemizin z(x,\lambda) çözümünün sıfırlarının sayısı N(\lambda) ile gösterilirse,lemma 3.3.1.a) dan dolayı \(\lambda \to +\infty \) için N(\lambda) ifadesi

\[N(\lambda) \sim \frac{\lambda}{\pi} \int_0^b |g(s)|ds \]

olur. Burada (3.61) diferensiyel denkleminin z(x,\lambda) çözümünün sıfırları için geçerli olan N(\lambda) ifadesi,(3.60) ile verilen değişken dönüşümü altında (3.59) diferensiyel denkleminin y(x,\lambda) çözümünün sıfırlarının sayısı içinde geçerlidir.

Teorem 3.3.3. (3.59) diferensiyel denkleminin q,g,w katsayı fonksiyonları teorem 3.3.2. ile verilen şartları sağlasın.Ayrıca

\[\int_0^b |g(s)|ds > 0 \] \hspace{1cm} (3.62)

olduğunu kabul edelim.Ö zaman (3.61) diferensiyel denklemi için \(\lambda \to +\infty \) olduğunda N(\lambda) ifadesi,
\[N(\lambda) \sim \frac{\lambda}{\pi} \int_{0}^{b} |g(s)| \, ds \quad (3.63) \]

bíçiminde olur.

İspat: Yukarıda verilen lemma 3.2.1.a ve teorem 3.4.2. için yapılan ispatlar altında, (3.59) diferensiyel denkleminin çözümlerinin sıfırlarının sayısında (3.63) ile gösterileceği açıklır.

Uyarı 3.3.3.1. Reel bir \(\lambda \) özdeğerine karşılık gelen \(y(x, \lambda) \) özfonksiyonu kompleks değerdir. Bundan dolayı \(y(x, \lambda) \) özfonksiyonu

\[y(x, \lambda) = z(x, \lambda) \exp \left\{-i \lambda \int_{0}^{b} g(s) \, ds \right\} \]

bíçimindedir ki burada verilen \(z(x, \lambda) \) fonksiyonu reel-değerlidir. Böylece \(z(x, \lambda) \) fonksiyonunun sıfırlarının sayısında \(N(\lambda) \) ile verilir. Ayrıca \(y(x, \lambda) \) fonksiyonu \(z(x, \lambda) \) -ya bağlı olduğundan, \(y(x, \lambda) \) -nın sıfırlarının sayısı da \(N(\lambda) \) ile sayılır.

Teorem 3.3.4. (3.50) diferensiyel denkleminin \([0, b]\) aralığı üzerinde verilen katsayı fonksiyonları \(q, g, w \in C[0, b] \) ve \(g(x) > 0 \) olarak verilsin. Bu taktirde,

\[y^{[0]}(0) \cos \alpha - y^{[1]}(0) \sin \alpha = 0 \quad (3.64) \]
\[y^{[0]}(b) \cos \beta + y^{[1]}(b) \sin \beta = 0 \quad (3.65) \]

sınırlı şartları \(\alpha, \beta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \), \(y^{[0]}(x) = y(x) \) ve \(y^{[1]}(x) = y'(x) + i \lambda g(x) y(x) \) olmak üzere verilsin. (3.59) diferensiyel denklemi ile (3.64)–(3.65) sınırlı şartlarından.
oluşan sınır-değer probleminin λ_n özdegeri $n \to \infty$ için

$$\lambda_n \sim \frac{n\pi}{\int_0^b g(s)ds}$$

(3.66)

biçiminde verilir ki bu λ_n özdegerinin asimptotik gösterimidir.

Gerçekten bu λ_n özdeğerlerine karşılık gelen $y(x, \lambda_n)$ özfonksiyonları $(0, b)$ aralığında tam n -tane sıfıra sahip olur.

İspat: Yukarıda teorem 3.3.3.‘ün ispatı yapılarken kullanılan değişken dönüşümü göz önüne alınırsa, $\alpha, \beta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ olmak üzere, (3.64)-(3.65) sınır şartları,

$$z(0)\cos\alpha - z'(0)\sin\alpha = 0$$
$$z(b)\cos\beta + z'(b)\sin\beta = 0$$

biçiminde bir çift ayrık homojen sınır şartlarına dönüşür. Bu kabuller altında (3.61) diferensiyel denklemindeki λ^2 nin katsayısı pozitif olur. Böylece $z(x, \lambda)$ özfonksiyonları için (3.53) ile ifade edilen özdeğerlerin asimptotik hesabına salınım teoremi uygulanırsa (3.66) ifadesi elde edilir ki ispat biter.
ÖZET

Bu çalışmada, modified Prüfer dönüşümleri kullanılarak Sturm – Liouville problemlerinin özdeğerlerinin ve sıfır-larının sayısının asimptotik yaklaşımı verilmiştir.

SUMMARY

In this study, using the modified Prüfer transformation the asymptotic estimate is given for the number of zeros and the eigenvalues of Sturm – Liouville problems.
KAYNAKLAR

