An improved itemset generation approach for mining medical databases
Küçük Resim Yok
Tarih
2011
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Finding frequent patterns in data mining plays a significant role for finding the relational patterns. In this study an extendable and improved itemset generation approach has been constructed and developed for mining the relationships of the symptoms and disorders in the medical databases. The algorithm of the developed software finds the frequent illnesses and generates association rules using Apriori algorithm. The developed software can be usable for large medical and health databases for constructing association rules for disorders frequently seen in the patient and determining the correlation of the health disorders and symptoms observed simultaneosly. © 2011 IEEE.
Açıklama
TUBITAK;IEEE
2011 International Symposium on INnovations in Intelligent SysTems and Applications, INISTA 2011 -- 15 June 2011 through 18 June 2011 -- Istanbul-Kadikoy -- 85879
2011 International Symposium on INnovations in Intelligent SysTems and Applications, INISTA 2011 -- 15 June 2011 through 18 June 2011 -- Istanbul-Kadikoy -- 85879
Anahtar Kelimeler
Artificial Intelligence, Data Mining, Improved itemset generation approach
Kaynak
INISTA 2011 - 2011 International Symposium on INnovations in Intelligent SysTems and Applications
WoS Q Değeri
Scopus Q Değeri
N/A