Hastalık teşhisi için bir yapay sinir ağları yazılımının tasarlanması ve gerçekleştirilmesi

Yükleniyor...
Küçük Resim

Tarih

2017-01-10

Yazarlar

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Selçuk Üniversitesi Fen Bilimleri Enstitüsü

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Bu tez çalışmasında, tıbbi tanılamayı desteklemek amacıyla yapay sinir ağları yöntemi kullanılmıştır. C#.NET programlama dili ile görsel arayüze sahip olan bir yazılım gerçekleştirilmiştir. Yazılım ile, sonuçların başarı analizi yapılabilmekte ve performansı ölçülebilmektedir. Yazılım, yapay sinir ağlarıyla ilgili uygulamalarda ve akademik çalışmalarda kullanılabilecek şekilde tasarlanmıştır. Yapılan çalışmalarda, eğitim ve test veri seti olarak romatoid artrit hastası olan ve olmayan insanlardan alınmış veriler kullanılmıştır. Yazılım ile, dinamik biçimde belirlenen nöron sayısı, öğrenme hızı, momentum katsayısı ve iterasyon sayısına göre eğitim yapılabilmektedir. Ağın, 0 (sıfır) hataya, ortalama olarak 500 ve 1500 iterasyon aralığında ulaştığı tespit edilmiştir. Farklı işlemcili bilgisayarlarda, 1500 ve üzerinde gerçekleştirilen iterasyonlarda %82 ve %100 aralığında başarılar elde edilmiştir. Çalışmada, yapay sinir ağlarının önemi ve öğrenebilen yazılımların bilgisayar teknolojilerindeki avantajları incelenmiştir. Ayrıca, romatoid artrit hastalığı teşhisi için Backpropagation algoritması Matlab ortamında da incelenmiştir. Backpropagation ve Perceptron algoritması ile bulunan sonuçlar, performans açısından karşılaştırılmıştır. Backpropagation algoritması ile %82 doğruluk yüzdesi elde edilirken, Perceptron algoritması ile doğruluk yüzdesi %71 olarak bulunmuştur.
In this thesis, method of artificial neural networks is used in order to support medical diagnostics. A software, which has a visual interface, has been designed with C#.NET programming language. With this software, success analysis of the results can be made and the performance of the results can be measured. This software was designed to be able to be used in academic studies and in applications which are related to artificial neural networks. In the studies, the datas which are received from the patients with rheumatoid arthritis and from the people who are not suffering from rheumatoid arthritis are used as training and test data sets . With the software, training takes place according to the desired number of neurons, learning rate, momentum coefficient and number of iterations which are determined dinamically. It was found that the network, on average, reaches the zero error rate, in the range of 500 and 1500 iterations. In the iterations which were performed 1500 times and more in computers with different processors, 82% to 100% success rate has been obtained. In this study, the importance of artificial neural networks and the advantages of the software, that can learn, in computer technologies have been examined. Also, backpropagation algorithm was examined in Matlab environment for the diagnosis of rheumatoid arthritis. The results found with the backpropagation algorithm and the perceptron algorithm have been compared in terms of performance. While %82 accuracy percentage is obtained with the Backpropagation algorithm, the accuracy percentage is found as %71 with Perceptron algorithm.

Açıklama

Anahtar Kelimeler

Yapay sinir ağları, Hastalık teşhisi, Yapay zeka, Artificial neural networks, Disease diagnosis, Artificial intelligence

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

Tok, K. (2017). Hastalık teşhisi için bir yapay sinir ağları yazılımının tasarlanması ve gerçekleştirilmesi. Selçuk Üniversitesi, Yayımlanmış yüksek lisans tezi, Konya.