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Abstract. In this paper, we consider the estimation of R = P (Y < X) where
X and Y have two independent Weibull distributions with di¤erent scale para-
meters and the same shape parameter. We used di¤erent methods for estimating
R. Assuming that the common shape parameter is known, the maximum like-
lihood, uniformly minimum variance unbiased and Bayes estimators for R are
obtained based on type-II right censored sample. Monte Carlo simulations are
performed to compare the di¤erent estimators.
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Acronyms and Abbreviations

CDF Cumulative distribution function
PDF Probability density function
MLE Maximum likelihood estimator
UMVUE Uniformly minimum variance unbiased estimator
MSE Mean square error



Notations

F1(:) Cumulative distribution function of X
F2(:) Cumulative distribution function of Y
R̂1 MLE of R
R̂2 UMVUE of R
R̂3 Bayes estimator of R using conjugate prior
R̂4 Bayes estimator of R using non informative prior
E(R̂1) Expected value of R̂1
V ar(R̂1) Variance of R̂1
WE(�; k) Weibull distribution with parameters � and k
IG(a; b) Inverse gamma distribution with parameters a and b
�2(r) Chi-square distribution with parameters r
R P (Y < X)
�(:) Gamma function

1.Introduction

A common problem of interest in reliability analysis is that of estimating the
probability that one variable exceeds another, that is,R = P (Y < X), where
X and Y are independent random variables. The parameters, R is referred to the
reliability parameter. This problem arises in the classical stress-strength relia-
bility where one is interested in assessing the proportion of the times the random
strength X of a component exceeds the random stress Y to which the compo-
nent is subjected. This problem also arises in situation where X and Y represent
lifetimes of two devices and one wants to estimate the probability that one fails
before the other.
Birnbaum (1956) was the �rst to consider the model R = P (Y < X) and
since then has found increasing number of applications in many di¤erent areas.
If X is the strength of a system which is subjected to a stress Y , then R is
a measure of system performance, the system fails if at any time the applied
stress is greater than its strength.
The estimation of R is very common in the statistical literature. For example,
Church and Harris (1970), Downton (1973), Tong (1974, 1977), Beg and Singh
(1979), Awad, et.al.(1981), Sathe and Shah (1981), Johnson (1988), McCool
(1991), Ivshin and Lumelskii (1995), Mahmoud (1996), Ahmed et.al.(1997),
,Surles and Padgett (2001), Abd-Elfattah and Mandouh (2004), Kundu and
Gupta (2005, 2006). Recently, Kotz et al. (2003), presented a review of all
methods and results on the stress-strength model in the last four decades.
Weibull is one of the most widely used distributions in reliability studies. It is
often used as the lifetime distribution, because some failure models are described
by their shape parameter. Therefore, the Weibull distribution is important and
has been studied extensively over the years.
Censoring is very common in life tests. The most common censoring schemes
are type I and type II. In many applications, test units may have to remove
during test although they have not yet failed completely. Under censoring of



type II, a random sample of n units is followed as long as necessary until r
units have experienced the event. In this design the number of failures r, which
determines the precision of yhe study, is �xed in advance and can be used a
design parameter.
In this paper, we consider the problem of estimating reliability in the stress
strength model when the strength of a unit or a system, X , has cumulative
distribution function F1(x)and the stress subject to it, Y , has CDF F2(y). The
main purpose of this paper is to focus on the inference onR = P (Y < X),
where , Xand Y are independent Weibull random variables with di¤erent scale
parameters �1 and �2respectively and common shape parameter k when the data
are type II censored. The maximum likelihood estimator, uniformly minimum
variance unbiased estimator and Bayes estimators of P (Y < X)are discussed.
The maximum likelihood estimator and its asymptotic distribution are used to
construct an asymptotic con�dence interval ofP (Y < X).
We use the following notation. Weibull distribution with the scale parameter
� and shape parameter kwill be denoted by WE(�; k); and the corresponding

density function is as follows f(x; �; k) =� k
� x

k�1 e�
xk

� ; x > 0
Moreover, the gamma density function with the shape and scale parameters
a and brespectively will be denoted by GA(a; b) and the corresponding density
function is as followsf(x; a; b) = ba

�a x
a�1 e�bx; x > 0 where � (�)is the gamma

function. If Xfollows GA(a; b)then 1
X follows the inverse gamma, and it will be

denoted byIG(a; b)
The rest of the paper is organized as follows. In Section 2, we obtain MLE of R
and study some its properties. In Section 3, UMVUE of Ris obtained. Bayesian
estimators are presented in Section 4. Numerical illustrations have been used
to compare di¤erent estimators in Section 5 using simulation study.

2. Maximum Likelihood Estimator of Rwith Type II Censored Sam-
ples

The MLE of R under Weibull distribution assumption has discussed by McCool
(1991) in the complete sample case. To obtain the MLE of R based on type II
censored sample, suppose X and Y followWE(�1; k) andWE(�2; k)respectively,
and they are independent. The probability density functions of Xand Y are,

(2.1) f(x; �1; k) =
k

�1
xk�1e�

xk

�1 ; x > 0

(2.2) f(y; �2; k) =
k

�2
yk�1e�

yk

�2 ; y > 0

The reliability function is de�ned as



(2.3)

R = P (Y < X) =
1R
0

xR
0

f(y) f(x) dy dx

=
R1
0

k
�1
xk�1(1� e

�xk
�2 )e

�xk
�1 dx

= �1
�1+�2

Now to compute the MLE ofR, �rst we need to obtain the MLE of �1 and �2.
Suppose X1; :::; Xrbe a random sampled from Weibull distribution with para-
meters (�1; k) where r � n are the �rst failure observations. The exact likelihood
function with type-II censored sample is

L(�1; k) =
n!

(n� r)!

rY
i=1

f(xi) [1� F (xi)]n�r

then

(2.4) L(�1; k) =
n!

(n� r)!
kr

�r1

rY
i=1

xk�1i e

�(
rP

i=1
xkr+(n�r) x

k
r )

�1

@ lnL(�1; k)

@�1
=

�r�̂1 +
rP
i=1

xki + x
k
r (n� r)

�̂
2

1

= 0

then

(2.5) �̂1 =

rP
i=1

xki + x
k
r (n� r)

r

Similarly,Y1; :::; Ysbe a random sample from Weibull distribution with parame-
ters (�2; k) where s � m are the �rst failure observations.

(2.6) L(�2; k) =
m!

(m� s)!
ks

�s2

sY
j=1

yk�1j e

�(
sP

j=1
ykj +(m�s)yk

s
)

�2

@ lnL(�2; k)

@�2
=

�s�̂2 +
sP
j=1

ykj + y
k
s (m� s)

�̂
2

2

= 0

then

(2.7) �̂2 =

sP
j=1

ykj + y
k
s (m� s)

s



Once we obtain �̂1 and �̂2, the MLE of Rbecomes

(2.8) R̂1 =
�̂1

�̂1 + �̂2

from (2.5) and (2.7) in (2.8)

(2.9) R̂1 =
1

1 + r
s

sP
j=1

ykj+y
k
s (m�s)

rP
i=1

xki+x
k
r (n�r)

Since k is known, we have

2(
rP
i=1

xki + (n� r)xkr )

�1
� �2(2(r + 1))

and

2(
sP
j=1

ykj + (m� s)yks )

�2
� �2(2(s+ 1))

Then F = �̂1
�̂2
( 1
R̂1
� 1) has F-distribution with (2(s+ 1); 2 (r + 1))degrees of

freedom. From this fact we shall study some prosperities of R̂1. We can show
that,

(2.10) E
�
R̂1

�
=

�1

�1 +
�2r
(r�1)

241� (r + s� 1)
s (r � 2)

 
1� �1

�1 +
�2r
(r�1)

!235
For �xed s,

(2.11) lim
r!1

E
�
R̂1

�
= R

�
1� 1

s
(1�R)2

�
and

(2.12) lim
r;s!1

E
�
R̂1

�
= R

from (2.12), R̂1 asymptotically unbiased estimator of R.
Also,



(2.13) V ar
�
R̂1

�
=
(r + s� 1)
s (r � 2)

24 �2r
�1(s�1)
�1(r+1)
�2(s�1)

352 " 1

1 + �2r
�1(r�1)

#2

(2.14) lim
r;s!1

V ar
�
R̂1

�
= R2

�
�2
�1

�4
lim
s!1

1

s

then

(2.15) lim
r;s!1

V ar
�
R̂1

�
= 0

From (2.12) and (2.15), R̂1 is a consistent estimator for R.

3. Uniform Minimum Variance unbiased Estimator of R

Set ui = xki ,i = 1; :::; r. Then U =
rP
i=1

uiis minimal su¢ cient statistic for �1.

Similarly, vj = ykj ,j = 1; :::; s. Then V =
sP
j=1

vj be minimal su¢ cient statistic for

�2. Moreover (U; V ) is minimal set of jointly complete and su¢ cient statistics
for �1,�2.
Let

W =

�
1; v1 < u1
0; v1 � u1

E(W ) = 1:P (v1 < u1) + 0:P (v1 � u1) = P (yk1 < xk1) = P (y1 < x1) = R

Therefore W is an unbiased estimator for R. Then the UMVUE, R̂2for R is
given by,

R̂2 = E(W j
rP
i=1

ui;
sP
j=1

vj)

= P (y1 < x1j
rP
i=1

ui;
sP
j=1

vj)

By using Rao-Blackwell and Lehmann - Sche¤e� Theorem to �nd UMVUE
forR.(see Mood et al.(1974)).

R̂2 =

Z
z1

Z
v1

w f(u1; v1 jU; V )dv1 du1

u1; v1are independent, we have



(3.1) R̂2 =

Z
z1

Z
v1

w f(u1 ju )f(v1 j v )dv1 du1

(3.2) f(u1 ju ) =
f(u1)f(u� u1)

f(u)

and

(3.3) f(v1 j v ) =
f(v1)f(v � v1)

f(v)

Note that U and V are independent gamma random variables with parameters
(r; �1) and (s; �2), respectively.
We see that U�u1 and V �v1are independent gamma random with parameters
(r�1; �1) and (s�1; �2), respectively. Moreover U�u1 and u1are independent,
as well as V � v1 and v1 are also independent. We see that

(3.4) R̂2 =

Z
u1

Z
v1

w
(r � 1)(s� 1)
u(r�1)v(s�1)

(u� u1)(r�2)(v � v1)(s�2)dv1du1;

Put A =
(r � 1)(s� 1)
u(r�1)v(s�1)

R̂2 = A

8>><>>:
R v
0
(v � v1)(r�2)

(u� v1)(r�1)
r � 1 dv1; v < u;R z

0
[
vs�1

s� 1 �
(v � u1)(s�2)

s� 1 ](u� u1)(s�2)du1; v � u;

By using Binomial expansion, we have

(3.5) R̂2 =

8>>><>>>:
(r � 1)!(s� 1)!

r�1P
j=1

(�1)j( vu )
j

(r � 1� j)!(s� 1 + j)! ; v < u;

1� (r � 1)!(s� 1)!
r�1P
j=1

(�1)j(uv )
j

(s� 1� j)!(r � 1 + j)! ; v � u;

where

(3.6) U =
rX
i=1

ui and V =
sX
j=1

vj :



4. Bayes Estimator

In this section, we consider Bayesian inference on R. We obtain Bayes estimate
of R under the square error loss function based on cojuagate and noninformative
priors of the parameters �1 and �2.

4.1 Conjugate prior distribution

Let X1; :::; Xr and Y1; :::; Ys be the �rst r and s failure observations from X1; :::;
Xn and Y1; :::; Ym respectively. Both of them have Weibull distribution with
parameters (�1; k) and (�2; k) respectively. According to approach of Berger and
Sun (1993), it is assumed that the prior density of �1 is inverted IG(a; b), there-
fore the prior density function of �1 becomes we will choice the prior distribution
of �1 is given by

(4.1) �01(�1) =
bae�

b
�1 �

(a+1)
1

�(a)
; �1 > 0

The joint of the likelihood function with type II censored sample is:

(4.2) f (x1; ::::; xr j�1 ) =
n!

(n� r)!
kr

�r1

rY
i=1

xk�1i e

�(
rP

i=1
xki +(n�r)x

k
r )

�1

then the posterior function of �1

(4.3) �1(�1) = f (�1 jx1; ::::; xr ) =
e
��1
�1 �

1+r+b

1

�
(r+b)
1 �(r + b+ 1)

where�1 = a+
rP
i=1

xki + (n� r)xkr .

Similarly, let the prior of �2

(4.4) �02(�2) =
cde�

c
�2

�(d)
�
�(d+1)
2 ; �2 > 0

then the posterior function of �2

(4.5) �2(�2) = f (�2 jy1; ::::; ys ) =
�d+s+12 e

��2
�2

�(s+ d+ 1)�
(s+d)
2

Where �2 = c+
sP
j=1

ykj + (m� s)yks



Since both �1 and �2 are independent then the joint posterior distribution func-
tion is

(4.6) � (�1; �2 jx1; ::::; xr ; y1; :::; ys) =
�b+r+11 �d+s+12 e

��
1

�1
��

2
�2

�(r + b+ 1)�(s+ d+ 1)�(r+b)
1

�(s+d)
2

Hence Bayes estimator of R with respect to the mean square error loss function
is

R̂3 = E (R jx1; ::::; xr ; y1; :::; ys)
then

(4.7) R̂3=
�b+r+11 �d+s+12

�(r+b+1)�(s+d+1)

1Z
0

�(r+s+b+d+1)Rs+d+2 (1�R)r+b+1
(�1(1�R)+�2R)r+s+b+d+1 dR

4.2 Non Informative Prior Distributions

Let X1; :::; Xr be a random sample from Weibull distribution with parameters
(�1; k). The prior distribution of �1 is proportional to

p
I (�1), where I (�1) is

Fisher�s information of the sample about �1, and is given by

(4.8) I (�1) =
1

�21
+ 2

�k(1 + 1
k )

�31

from that the Je¤rey�s prior distribution

(4.9) �3 /
1

�1

Similarly, if Y1; :::; Ys is a random sample from Weibull distribution with para-
meters (�2; k), the prior distribution of �2 will be given by:

(4.10) �4 /
1

�2

if we have �1 and �2 are independent then the posterior joint distribution of �1
and �2,will be

(4.11)
� (�1; �2jx1; ::::; xr; y1; ::::; ys)/ L (x1; ::::; xr j�1 )L (y1; ::::; ys j�2 )�1(�1)�2(�2)

Let



H1 =
rX
i=1

xk�1i + xkr (n� r) and H2 =
sX
j=1

yk�1j + yks (m� s)

then

(4.12) �(�1; �2jx; y) =
Hr
1H

s
2

�r+11 �s+12 �(r)�(s)
e
�H1
�1 e

�H2
�2 ; �1; �2 > 0

Under the mean square error, Bayes estimator R̂4 of R will be

(4.13) R̂4 = E (R jx; y ) =
Hr
1H

s
2

�(r)�(s)

1Z
0

�(r + s+ 3)Rs+3(1�R)r+2
(H1(1�R) +H2R)r+s+3

dR

5. Simulation study for the di¤erent estimators

In this section, we perform some simulation experiments to observe the baehav-
ior of the di¤erent methods for di¤erent sample sizes and for di¤erent parameter
values. We used the software package MathCad 2001 fo this purpose. We com-
pare, in terms of the mean square error, the performances of the MLE, UMVUE
and Bayes estimates with respect to squares error loss function. The following
steps will be considered to obtain the estimators:

Step (1): Generate random samples X1; :::; Xr from Weibull distribution,
we consider the following sample sizes (n, m) = (5,5), (10,10), (15,15), (20,20),
(5,4), (10,5), (10,15), (10,20), (15,5), (15,10), (15,20), (20,10), and the following
parameter values �1 = 2, �2 = 3; 2 and k = 1:5 with di¤erent type II censoring
at 60%, 70%, 80% and 90% . We will generate 1000 random samples from
Weibull distribution.

Step (2): Similarly, we generate samples for Weibull distribution, with
parameters �2 and k.

Step (3): Using the Equation (2.8) to �nd the MLE of R and the Equation
(3.5) to �nd the UMVUE of R. Also using the equation (4.7) the values of Bayes
estimator of R is obtained using Conjugate prior distribution. Finally, the equa-
tion (4.13) gives the estimators of R using non informative prior distribution.
The results are based on 1000 replications.

Step (4): We take the average of the simulated values and calculate the the
mean square error of R. The results are reported in Tables (1) �(4).
From the tables, we �nd the following:
When the sample sizes n and m, increase then the average mean square error
decrease as expected in all the estimation methods. It is observed that the
UMVUE and Bayes behave almost in a similar manner both with respect to
MSE. The MLE estimate behaves quite di¤erent from the other. It has signi�-
cantly lower MSE in most of the cases.



Tables (1) ,(2)
1. We will �nd that MSE of R̂1has the smallest values among the other

values of MSE of [(R̂2), (R̂3) and (R̂4)] expect at some points R̂2has advantage
over the other estimators.

2. At some points MSE R̂3 is better than MSE of R̂4.
3. All mean square errors decrease as �1and �2 increases.

Tables (3) ,(4)
1. We will �nd that MSE of R̂2has the smallest values among the other

values of MSE of [(R̂1), (R̂3) and (R̂4)] expect at some points R̂1has advantage
over the other estimators.

2. At some points MSE R̂3 is better than MSE of R̂4.
3. All mean square errors decrease when r 6= s.

Table (1) When �1 = 2, �2 = 3, k = 1:5 and R = 0:4

Table (2) When �1 = 2, �2 = 2, k = 1:5 and R = 0:5



Table (3) When �1 = 2, �2 = 3, k = 1:5 and R = 0:4

Table (4) When �1 = 2, �2 = 2, k = 1:5 and R = 0:5
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