Çallio?lu H.Köksal N.S.Ataberk N.Kaynak I.2020-03-262020-03-2620041300686Xhttps://hdl.handle.net/20.500.12395/19343This study deals with an elastic-plastic behavior of woven steel fibers reinforced thermoplastic matrix laminated composite beam subjected to a bending moment. The beam consists of symmetric four orthotropic layers and its material is assumed to be strain hardening. The Tsai-Hill theory is used as a yield criterion in the solution. The Bernoulli-Euler hypotheses are utilized for small plastic deformations. The beam lay-up sequences are chosen as [0°]4, [15°/-15°]s, [30°/-30°] s and [45°/45°]s. The bending moment values that begin plastic flow at the upper and lower surfaces of the beam are carried out for various stacking sequences. The variations of the elastic, elastic-plastic and residual stress components versus increasing plastic region spread are given in tables and figures. The transverse displacement is obtained at the free end, numerically.eninfo:eu-repo/semantics/openAccessElastic-plastic stres analysisLaminated composite beamSmall plastic deformationElastic-plastic stress analysis of thermoplastic matrix laminated composite beamsArticle914964N/A