Nalli, AyseCivciv, Haci2020-03-262020-03-2620090960-0779https://dx.doi.org/10.1016/j.chaos.2007.07.069https://hdl.handle.net/20.500.12395/23205In this paper, we construct the symmetric tridiagonal family of matrices M(-alpha-beta)(k), k = 1, 2,... whose determinants form any linear subsequence of the Fibonacci numbers. Furthermore, we construct the symmetric tridiagonal family of matrices T(-alpha-beta)(k), k = 1, 2,... whose determinants form any linear subsequence of the Lucas numbers. Thus we give a generalization of the presented in Cahill and Narayan (2004) [Cahill ND, Narayan DA. Fibonacci and Lucas numbers as tridiagonal matrix determinants. Fibonacci Quart 2004;42(3):216-21]. (C) 2007 Elsevier Ltd. All rights reserved.en10.1016/j.chaos.2007.07.069info:eu-repo/semantics/closedAccessA generalization of tridiagonal matrix determinants, Fibonacci and Lucas numbersArticle401355361Q1WOS:000266190700037Q1