Yildirim, MehmetAkdeniz, M. VedatMekhrabov, Amdulla O.2020-03-262020-03-2620181003-63262210-3384https://dx.doi.org/10.1016/S1003-6326(18)64842-3https://hdl.handle.net/20.500.12395/36536The effects of Mo addition on microstructures, phase relationships, order-disorder phase-transition temperatures and room-temperature mechanical properties of Fe50Al50-nMon alloys (n=1, 3, 5, 7, and 9, mole fraction, %) were investigated after solidification and heat treatment. Structural characterization of the samples was performed via X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry. Room-temperature mechanical properties were investigated by conducting compression and microhardness tests. Mo3Al particles precipitated in all alloys because of the limited solid solubility of Mo in the Fe-Al-based phases. The as-cast Fe50Al50-nMon alloys exhibited brittle behavior with high yield strength and limited fracture strain at room temperature. Compared with the as-cast alloys, all the heat-treated alloys except for the Fe50Al41Mo9 alloy exhibited enhanced mechanical properties at room temperature. The heat-treated Fe50Al43Mo7 alloy exhibited the highest fracture strain and compressive strength of 25.4% and 2.3 GPa, respectively.en10.1016/S1003-6326(18)64842-3info:eu-repo/semantics/closedAccessiron aluminidesmicrostructureorder-disorder phase transformationcompressive propertiesEffect of Mo addition on microstructure, ordering, and room-temperature mechanical properties of Fe-50AlArticle281019701979Q1WOS:000449403900007Q1