Narang, T. D.Chandok, Sumit2018-04-272018-04-272009Narang, T. D., Chandok, S. (2009). Fixed points of quasi-nonexpansive mappings and best approximation. Selcuk Journal of Applied Mathematics, 10 (2), 75-80.1302-7980https://hdl.handle.net/20.500.12395/10480URL: http://sjam.selcuk.edu.tr/sjam/article/view/237Using fixed point theory, B.Brosowski [Mathematica (Cluj) 11 (1969), 195-220] proved that if T is a nonexpansive linear operator on a normed linear space X, C a T-invariant subset of X and x a T-invariant point, then the set PC(x) of best C-approximant to x contains a T-invariant point if PC(x) is non-empty, compact and convex. Subsequently, many generalizations of the Brosowskis result have appeared. In this paper, we also prove some extensions of the results of Brosowski and others for quasi-nonexpansive mappings when the underlying spaces are metric linear spaces or convex metric spaces.eninfo:eu-repo/semantics/openAccessBest approximationEn iyi yaklaşımApproximatively compact setYaklaşık olarak kompakt setLocally convex metric linear spaceLokal olarak dışbükey metrik doğrusal uzayConvex metric spaceKonveks metrik boşlukStarshaped setYıldız şekilli setFixed points of quasi-nonexpansive mappings and best approximationArticle107580