Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Al-Asadi, Mustafa A." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Deep learning with SMOTE techniques for improved skin lesion classification on unbalanced data
    (Selçuk Üniversitesi, 2022) Al-Asadi, Mustafa A.; Altun, Adem Alpaslan
    Skin cancer has become a major public health concern around the world, with an increasing incidence in recent decades. The morphological characteristics of skin lesions are thought to be an important component of skin cancer diagnosis and early detection. Thus, with rapid advances in image classification, more emphasis has been placed on computer-aided diagnosis (CAD) of skin lesions according to their morphological features. However, small datasets or an imbalance of skin cancer datasets are the two most important issues that can hinder the success of skin cancer detection. This paper introduces a method for dealing with class imbalance and data scarcity that is based on the Synthetic Minority Oversampling Technique (SMOTE). The improved images were then used to train the Deep Learning Convolutional Neural Network (DLCNN) model. The proposed data augmentation technique is used to generate a new skin dataset for the HAM10000 dataset using dermoscopic images of seven skin lesion classes. According to the empirical results, the improved strategy proposed in this study has statistically significant effects on improving performance with respect to accuracy (85.99%), precision (90%), recall (88%), and F1-score (88%). Moreover, the proposed classification strategy It outperforms some of the techniques used to balance melanoma detection data.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim