Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Başçiftçi, Fatih." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Novel approaches to determine age and gender from dental x-ray images by using multiplayer perceptron neural networks and image processing techniques
    (PERGAMON-ELSEVIER SCIENCE LTD, 2019) Avuçlu, Emre.; Başçiftçi, Fatih.
    It may be necessary to determine the identity or gender of a person for any reason (disasters, inheritance etc.). In such cases, forensic medical institutions are asked for help. Forensic science institutions try to estimate the age of people's teeth and bones. In this study, a novel algorithm was developed to keep these predictions at the highest level and to obtain definite results. The data base of 162 different tooth classes is created manually. All image sizes are 150x150 pixels. First, image preprocessing techniques have been applied to teeth images. These preprocessing techniques were first applied to teeth images. After this process, the segmentation process of the teeth images was performed to extract the feature by novel segmentation algorithm. Segmentation can be done automatically and dynamically. Numerical data obtained as a result of feature extraction from dental images is presented as an inputs to Multi layer perceptron neural network. In application, feature reduction can be performed. Thanks to the originally developed algorithm, the highest success rates were obtained with the highest 99.9% (full segment) and 100% (notfull segment) classification. After classification, for many dental groups the age estimate is performed with zero error. Application was developed as a multidisciplinary study. (C) 2019 Elsevier Ltd. All rights reserved.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim