Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Başçiftci, Fatih" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Data Center Analytics Platform for Efficient Power Usage
    (Institute of Electrical and Electronics Engineers Inc., 2018) Aydemir, Fikri; Acar, Züleyha Yılmaz; Başçiftci, Fatih
    Modern Data Centers (DCs) require large amount of power in order to operate their underlying IT infrastructure and the surrounding support systems, such as cooling systems and power conversion systems, due to the complex interdependencies among these support systems. This situation requires a strategy for using the power efficiently while operating a DC. In this study, we firstly propose a software system that serves as data storage for both real-time and offline sensor data about power usage in a DC. Secondly, we provide an analytical platform that uses state-of-the-art deep learning techniques to make predictive data analytics and custom recommendations to DC operators in order to improve power usage effectiveness (PUE) in a DC. The aimed improvement involves estimating the conditions for achieving a PUE rate of 1.03 within an error range of 0.4 percent. © 2018 IEEE.
  • Küçük Resim Yok
    Öğe
    Data Center Analytics Platform for hfficient Power Usage
    (IEEE, 2018) Aydemir, Fikri; Acar, Züleyha Yılmaz; Başçiftci, Fatih
    Modern Data Centers (DCs) require large amount of power in order to operate their underlying IT infrastructure and the surrounding support systems, such as cooling systems and power conversion systems, due to the complex interdependencies among these support systems. This situation requires a strategy for using the power efficiently while operating a DC. In this study, we firstly propose a software system that serves as data storage for both real-time and offline sensor data about power usage in a DC. Secondly, we provide an analytical platform that uses state-of-the-art deep learning techniques to make predictive data analytics and custom recommendations to DC operators in order to improve power usage effectiveness (PUE) in a DC. The aimed improvement involves estimating the conditions for achieving a PUE rate of 1.03 within an error range of 0.4 percent.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim