Yazar "Baykan, Oemer Kaan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey(PERGAMON-ELSEVIER SCIENCE LTD, 2009) Boyacioglu, Melek Acar; Kara, Yakup; Baykan, Oemer KaanBank failures threaten the economic system as a whole. Therefore, predicting bank financial failures is crucial to prevent and/or lessen the incoming negative effects oil the economic system. This is originally a classification problem to categorize banks as healthy or non-healthy ones. This study aims to apply various neural network techniques, support vector machines and multivariate statistical methods to the bank failure prediction problem in a Turkish case, and to present a comprehensive computational comparison of the classification performances of the techniques tested. Twenty financial ratios with six feature groups including capital adequacy, asset quality, management quality, earnings, liquidity and sensitivity to market risk (CAMELS) are selected as predictor variables in the study. Four different data sets with different characteristics are developed using official financial data to improve the prediction performance. Each data set is also divided into training and validation sets. In the category of neural networks, four different architectures namely multi-layer perceptron, competitive learning, self-organizing map and learning vector quantization are employed. The multivariate statistical methods; multivariate discriminant analysis, k-means cluster analysis and logistic regression analysis are tested. Experimental results are evaluated with respect to the correct accuracy performance of techniques. Results show that multi-layer perceptron and learning vector quatization can be considered as the most successful models in predicting the financial failure of banks. (C) 2008 Elsevier Ltd. All rights reserved.Öğe Recognition of sun-pest infected wheat kernels using Artificial Neural Networks(IEEE, 2007) Babalak, Lahmet; Baykan, Oemer Kaan; Botsah, Fatih M.In this study it is aimed to recognize sun-pest infected kernels in a sample sub-group of wheat kernels taken from a bulk of Bezostaja wheat. Recognition of the damaged kernels is realized by evaluating light transmittance data of the kernels through use of Artificial Neural Networks (ANN). Wheat kernels in the sub-group are left to fall in an oblique groove with semi-circular cross-section. While the kernels cross a LED light source, light transmitted through the kernel fall on a sensor just across the light source. Analog signals induced by the sensor are recorded and histograms of these signals are evaluated by using ANN in order to recognize sun-pest infected wheat kernels in the sub-group. Two different ANN models: Multi Layer Perceptron (MLP) and Self Organizing Map (SOM) models were used in the recognition process.