Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Bozkurt D." seçeneğine göre listele

Listeleniyor 1 - 8 / 8
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Integer powers of certain complex pentadiagonal Toeplitz matrices
    (Springer New York LLC, 2017) Kübra Duru H.; Bozkurt D.
    In this paper, we obtain a general expression for the entries of the rth (r ? ?) power of a certain n × n pentadiagonal Toeplitz matrix. Additionally, we present the complex factorizations of Fibonacci polynomials. © Springer International Publishing AG 2017.
  • Küçük Resim Yok
    Öğe
    Note on one type of matrix and Fibonacci numbers
    (2010) Yilmaz F.; Kiyak H.; Gurses I.; Akbulak, Mehmet; Bozkurt D.
    In this paper, we construct one type of symmetric matrix family whose powers are related with Fibonacci numbers. © 2010 Pushpa Publishing House.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On stability of discrete-time interval matrices
    (2004) Yamaç K.; Bozkurt D.
    In this study we defined the condition number for interval matrices. We have given some inequalities and a sufficient condition for asymptotic stability of linear discrete-time systems with interval coefficients. © 2003 Elsevier Inc. All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On the ?p norms of almost cauchy-toeplitz matrices
    (1996) Bozkurt D.
    In this study, we have given the definition of almost Cauchy-Toeplitz matrix, i.e. its elements are tij = a(i = j) and tij = 1/(i - j) (i ? j) such that a is a real number. We have found a lower and upper bounds for the lp norm of this matrix. Furthermore, we have done the proof of the conjecture that were given by myself for the spectral norm of this matrix. © TÜBİTAK.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On the lp Norms of Hadamard Product of Cauchy-Toeplitz and Cauchy-Hankel Matrices
    (Taylor and Francis Inc., 1999) Bozkurt D.
    In this paper, we have established an upper and lower bounds for the ?p norms of Hadamard product of the matrices Hn and Tn where Hn and Tn are Cauchy-Hankel and Cauchy-Toeplitz matrices respectively. We have given a conjecture related with the spectral norm of these matrices. © 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
  • Küçük Resim Yok
    Öğe
    On the spectral radius of weighted digraphs
    (2012) Bozkurt Ş.B.; Bozkurt D.
    We consider the weighted digraphs in which the arc weights are positive definite matrices. We obtain some upper bounds for the spectral radius of these digraphs and characterize the digraphs achieving the upper bounds. Some known upper bounds are then special cases of our results.
  • Küçük Resim Yok
    Öğe
    Preface of the "symposium on Special Matrices: Theory and Applications"
    (American Institute of Physics Inc., 2017) Bozkurt D.
    [Abstract not Available]
  • Yükleniyor...
    Küçük Resim
    Öğe
    Upper bounds for the spectral and script l signp norms of Cauchy-Toeplitz and Cauchy-Hankel matrices
    (2004) Solak S.; Türkmen R.; Bozkurt D.
    A study on upper bounds for the spectral and ?p norms of Cauchy-Toeplitz and Cauchy-Hankel matrices is presented. An expression for a function ? is given. The proof of a corollary for Hadamard product of the matrices T and H is presented.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim