Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Cangül, İsmail Naci" seçeneğine göre listele

Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Generalization for Estrada Index
    (Amer Inst Physics, 2010) Güngör, Ayşe Dilek; Çevik, Ahmet Sinan; Karpuz, Eylem G.; Ateş, Fırat; Cangül, İsmail Naci
    In this paper the Estrada index of Hermite matrix is firstly defined and investigated. In fact this is a natural generalization of Estrada, distance Estrada and Laplacian Estrada indices. Thus all properties about them can be handled by this new index.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On the Efficiency of Semi-Direct Products of Finite Cyclic Monoids by One-Relator Monoids
    (Amer Inst Physics, 2010) Ateş, Fırat; Karpuz, Eylem Güzel; Güngör, A. Dilek; Çevik, A. Sinan; Cangül, İsmail Naci
    In this paper we give necessary and sufficient conditions for the efficiency of a standard presentation for the semi-direct product of finite cyclic monoids by one-relator monoids.
  • Yükleniyor...
    Küçük Resim
    Öğe
    On the Norms of Toeplitz and Hankel Matrices With Pell Numbers
    (Amer Inst Physics, 2010) Karpuz, Eylem Güzel; Ateş, Fırat; Güngör, A. Dilek; Cangül, İsmail Naci; Çevik, A. Sinan
    Let us define A = [a(ij)](i,j=0)(n-1) and B = [b(ij)](i,j=0)(n-1) as n x n Toeplitz and Hankel matrices, respectively, such that a(ij) = Pi-j and b(ij) = Pi+j, where P denotes the Pell number. We present upper and lower bounds for the spectral norms of these matrices.
  • Yükleniyor...
    Küçük Resim
    Öğe
    A presentation and some finiteness conditions for a new version of the schützenberger product of monoids
    (2016) Karpuz, Eylem Güzel; Ateş, Fırat; Çevik, Ahmet Sinan; Cangül, İsmail Naci
    In this paper we first define a new version of the Sch¨utzenberger product for any two monoids A and B , and then, by defining a generating and relator set, we present some finite and infinite consequences of the main result. In the final part of this paper, we give necessary and sufficient conditions for this new version to be periodic and locally finite.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Primes in Z[exp(2?i/3)]
    (Amer Inst Physics, 2010) Namlı, Dilek; Cangül, İsmail Naci; Çevik, Ahmet Sinan; Güngör, A. Dilek; Tekcan, Ahmet
    In this paper, we study the primes in the ring Z[w], where w = exp(2 pi i/3) is a cubic root of unity. We gave a classification of them and some results related to the use of them in the calculation of cubic residues are obtained.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Some Formulae for the Zagreb Indices of Graphs
    (AMER INST PHYSICS, 2012) Cangül, İsmail Naci; Yurttaş, Aysun; Togan, Müge; Çevik, Ahmet Sinan
    In this study, we first find formulae for the first and second Zagreb indices and coindices of certain classical graph types including path, cycle, star and complete graphs. Secondly we give similar formulae for the first and second Zagreb coindices.
  • Küçük Resim Yok
    Öğe
    Some properties on the lexicographic product of graphs obtained by monogenic semigroups
    (SPRINGER INTERNATIONAL PUBLISHING AG, 2013) Akgüneş, Nihat; Das, Kinkar C.; Çevik, Ahmet Sinan; Cangül, İsmail Naci
    In (Das et al. in J. Inequal. Appl. 2013:44, 2013), a new graph Gamma (S-M) on monogenic semigroups S-M (with zero) having elements {0, x, x(2), x(3),..., x(n)} was recently defined. The vertices are the non-zero elements x, x(2), x(3),..., x(n) and, for 1 <= i, j <= n, any two distinct vertices x(i) and x(j) are adjacent if x(i)x(j) = 0 in S-M. As a continuing study, in an unpublished work, some well-known indices (first Zagreb index, second Zagreb index, Randic index, geometric-arithmetic index, atom-bond connectivity index, Wiener index, Harary index, first and second Zagreb eccentricity indices, eccentric connectivity index, the degree distance) over Gamma (S-M) were investigated by the same authors of this paper. In the light of the above references, our main aim in this paper is to extend these studies to the lexicographic product over Gamma (S-M). In detail, we investigate the diameter, radius, girth, maximum and minimum degree, chromatic number, clique number and domination number for the lexicographic product of any two (not necessarily different) graphs Gamma (S-M(1)) and Gamma (S-M(2)).

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim