Yazar "Cansever, N." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of Sr and Ti Addition on the Corrosion Behaviour of Al-7Si-0.3Mg Alloy(POLSKA AKAD NAUK, POLISH ACAD SCIENCES, 2017) Uludag, M.; Kocabas, M.; Dispinar, D.; Cetin, R.; Cansever, N.In the present study, the corrosion behaviour of A356 (Al-7Si-0.3Mg) alloy in 3.5% NaCl solution has been evaluated using cyclic/potentiodynamic polarization tests. The alloy was provided in the unmodified form and it was then modified with AlTi5B1 for grain refinement and with AlSr15 for Si modifications. These modifications yield to better mechanical properties. Tensile tests were performed. In addition, bifilm index and SDAS values were calculated and microstructure of the samples was investigated. As a result of the corrosion test, the Ecorr values for all conditions were determined approximately equal, and the samples were pitted rapidly. The degassing of the melt decreased the bifilm index (i.e. higher melt quality) and thereby the corrosion resistance was increased. The lowest corrosion rate was founded at degassing and as-received condition (3.9x10(-3) mm/year). However, additive elements do not show the effect which degassing process shows.Öğe Nickel fluoride as a surface activation agent for electroless nickel coating of anodized AA1050 aluminum alloy(ELSEVIER SCIENCE SA, 2019) Kocabaş, M.; Örnek, C.; Curioni, M.; Cansever, N.In this study, the use of nickel fluoride tetrahydrate (NiF2 center dot 4H(2)O) as a surface activator and sealant at the same time for the coating of electroless nickel-phosphorus (Ni-P) on anodized aluminum alloy AA1050 is proposed. The usage of the activator resulted in more efficient deposition of Ni-P, improved adhesion properties, and increased wear and friction behavior as opposed to non-activated conditions. Scanning electron microscopy (SEM) and confocal laser microscopy (CLM) analyses of ultramicrotome-cut cross sections of Ni-P coated specimens, surface-activated by NiF2 center dot 4H(2)O, revealed a more well-structured metal-coating interface as opposed to non-activated conditions.