Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ceylan, R." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    A New Application Area of ANN and ANFIS: Determination of Earthquake Load Reduction Factor of Prefabricated Industrial Buildings
    (Taylor & Francis Ltd, 2010) Ceylan, M.; Arslan, M. H.; Ceylan, R.; Kaltakcı, M. Y.; Özbay, Y.
    The earthquake load reduction factor, R, is one of the most important parameters in the design stage of a building. Significant damages and failures were experienced on prefabricated reinforced concrete structures during the last earthquakes in Turkey and the experts agreed that they resulted mainly from the incorrectly selected earthquake load reduction factor, R. In this study, an attempt was made to estimate the R coefficient for prefabricated industrial structures having a single storey, one and two bays, which are commonly constructed for manufacturing andwarehouse operation with variable dimensions. According to the selected variable dimensions, 280 sample (140 samples for one bay (S-1) and 140 samples for two bays (S-2)) frames' load-displacement relations were computed using pushover analysis and the earthquake load reduction factor, R, was calculated for each frame. Then, formulated three-layered artificial neural network methods (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) were trained by using 214 of the 280 sample frames. Then, the methods were tested with the other 66 sample frames. Accuracy rates were found to be about 94% and 96% for ANN and ANFIS, respectively. The use of ANN and ANFIS provided an alternative way for estimating the R and it also showed that ANFIS estimated R more successfully than ANN.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim