Yazar "Demirel, I" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Deep peroneal motor nerve conduction velocity distribution and correlation between nerve conduction groups and the number of innervated muscle fibers(TAYLOR & FRANCIS LTD, 2004) Bayramoglu, FG; Dalkilic, N; Kiziltan, E; Demirel, IIn this study, the distribution of peroneal-nerve conduction velocity was studied in 17 normal subjects, using the collision method. Paired supramaximal stimuli with predetermined interstimalus intervals (ISI) were applied at distal and proximal points of peroneal nerve and the resultant compound muscle action potentials (CMAPs) were recorded. The change in CMAP amplitudes and areas with ISI were deduced, and the relative number of fibers corresponding to each conduction velocity group (CVG) were computed. Conduction velocities of the peroneal motor nerve innervating the Extensor Digitorum Brevis (EDB) muscle were found to be in the range of 28-52 m/s and CVG innervating the greatest number appears to be in 40-48 m/s range, which consists of 70% of all fibers. These results show that, compared with the median motor nerve, deep peroneal motor nerve that innervates the EDB muscle consist of slow fibers.Öğe The effect of bupivacaine on compound action potential parameters of sciatic nerve fibers(TAYLOR & FRANCIS LTD, 2004) Dalkilic, N; Bariskaner, H; Dogan, N; Demirel, I; Ilhan, BThe aim of this study was to document the effects of the local anesthetic agent bupivacaine on individual fibers of peripheral nerve. To accomplish this objective, compound action potentials (CAPs) were recorded from isolated frog sciatic nerves treated with bupivacaine for seven individual concentration levels. Numerical and fast Fourier transform (FFT) analysis were performed on these recordings. The areas, latency periods, maximum and minimum derivatives, and power spectrums of the CAPs were computed. The results show that the area and the absolute values of maximum and minimum derivatives decrease linearly as bupivacaine concentration increases. The power spectrum of the CAPs, which resides in the 0-1000 Hz interval, initially shifts to higher frequencies then returns to lower frequency region again with increasing bupivacaine concentration. Due to this result, it is thought that bupivacaine inhibits nerve fibers in a dose-dependent manner. It primarily affects the fibers having the least myelin sheets (motor fibers), then it begins to depress the fast conducting (neurosensorial) fibers as the bupivacaine concentration increases, and finally blocks the unmyelinated C-fibers.