Yazar "Eldem, Hüseyin" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Karınca kolonisi optimizasyonu (ACO) ve parçacık sürü optimizasyonu (PSO) algoritmaları temelli bir hiyerarşik yaklaşım geliştirilmesi(Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 2014-06-16) Eldem, Hüseyin; Ülker, ErkanOptimizasyon, herhangi bir sistemin olası tüm tasarımları arasından en iyisini bulmaktır. Belirli kısıtları olan bir problemin, sonucunu etkileyen parametre değerlerinin bulunarak, en kârlı sonucun minimum maliyetlerle belirlenmesini hedeflemek, problemin optimize edilmesi anlamını taşır. Optimizasyon problemlerini çözmek için kullanılan teknikler matematiksel ve sezgisel olarak sınıflandırılır. Matematiksel yöntemler, optimum sonucu bulabilseler de özellikle çözüm uzayı büyük olan problemlerin çözümlerinde çok fazla zaman harcamaktadırlar. Sezgisel yöntemler ise çözüm uzayının tümünü ele almadan sezgisel bir şekilde çok kısa sürelerde optimum sonuçlara ya da optimuma çok yakın sonuçlara ulaşabilmektedirler. Sezgisel algoritmalar, tüm tasarımlarda başarılı olmayabilir. Geliştirilen yöntemin her türden problemin çözümünde başarılı olmasını beklemek yerine hangi tür problemlerin çözümlerinde optimum sonuçlar ürettiğini bilerek buna göre sınıflandırılması uygundur. Optimizasyon alanındaki geliştirilen metasezgisel algoritmalardan bazıları doğada yaşayan bazı canlıların yaşamlarını devam ettirebilmek için sergiledikleri hareketlerden yola çıkarak ortaya çıktığı bilinmektedir. Doğal fenomenlerden esinlenen algoritmalardan Karınca Kolonisi Optimizasyonu (Ant Colony Optimization - KKO) özellikle ayrık optimizasyon problemlerin çözümünde, Parçacık Sürü Optimizasyonu (Particle Swarm Optimization - PSO) ise sürekli optimizasyon problemlerin çözümünde başarılı olmuşlardır. Optimizasyon problemlerinin çözümünde keşfedilen yöntemlerin buldukları sonuçları iyileştirmek için bu yöntemler geliştirilmiştir. Ayrıca bu çözüm yöntemlerinin birlikte çalışması ile elde edilen çözümlerin iyileştirilmesi izlenen başka bir yoldur. Bu tez çalışmasında, KKO yönteminin ürettiği sonuçların iyileştirilmesi için, bulduğu çözümleri hiyerarşik bir yapıda, ayrıklaştırılmış PSO yönteminin iyileştirmesi üzerine bu iki yöntemin birlikte çalışabileceği ele alınmıştır. Literatürde optimizasyon problemlerinin çözümünde sıkça kullanılan test fonksiyonlarından Gezgin Satıcı Problemi (Traveling Salesman Problem - GSP ) nin çözümünde, önerilen yöntem kullanılmıştır. Böylelikle hiyerarşik yöntemde uygun başlangıç çözümlerini üreten KKO algoritmasının bulduğu sonuçların PSO tarafından iyileştirilmesi sağlanmıştır. Ayrıca tez kapsamında, bu iki yöntemin hiyerarşik bir yaklaşımla komşuluk operatörleri yardımıyla birlikte çalışmaları test edilerek performans sonuçları verilmiştir. Tez kapsamında KKO ve PSO algoritmalarının yalın (standart) halleri de kullanılarak ürettiği sonuçlar saklanmış olup, önerilen hiyerarşik yaklaşımın, standart KKO ve standart PSO algoritmaları sonuçları ile kıyaslandığında daha iyi sonuçlar elde ettiği görülmüştür.