Yazar "Erdal, Mehmet Okan." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Investigation of electrical conductivity of PAN nanofibers containing silica nanoparticles produced by electrospinning method(ELSEVIER, 2019) Mpukuta, Olivier Mukongo.; Dincer, Kevser.; Erdal, Mehmet Okan.This paper sheds new light on how an amount of silica nanoparticles (1, 3 and 5 wt. %) acts on the morphology, the hydrophobicity and on the electrical conductivity of polyacrylonitrile (PAN) nanofibers. In this study, electrospinning technique was used to fabricate nanofibers composites consisting of PAN, dimethylformamide (DMF) and silica at two different applied voltages (15 kV and 20 kV). The scanning electron microscopy (SEM), X-ray diffraction technique (XRD), contact angle technique and the four-point probe technique were respectively used to investigate the morphology and diameter range, the crystalline structure, the hydrophobicity and the electrical conductivity of the obtained nanofibers. At the end, different results of the investigation were compared each other and discussed. (C) 2019 Elsevier Ltd. All rights reserved.Öğe Temperature dependent current-voltage characteristics of Al/TiO2/n-Si and Al/Cu:TiO2/n-Si devices(ELSEVIER SCI LTD, 2019) Erdal, Mehmet Okan.; Kocyigit, Adem.; Yıldırım, Murat.We fabricated undoped and Cu doped TiO2 thin films by spin coating technique and employed the films as interfacial oxide layer between the Al and n-type Si to investigate the effect of temperature on the Al/TiO2/n-Si and Al/Cu:TiO2/n-Si devices. For that aim, the I-V measurements were performed in the range of 50 K-400 K by 50 K interval. The devices exhibited good rectifying behavior and thermal response in a wide range temperature. Ideality factor, barrier height and series resistance were calculated from I-V measurements for various temperatures by thermionic emission theory, Norde and Cheung methods and discussed in the details. The obtained results revealed that the device parameters are a strong function of the temperature. The interface states (N-ss) were affected by the changing of the temperatures. The Al/TiO2/n-Si and Al/Cu:TiO2/n-Si devices can be performed for wide range temperatures in various technological applications.