Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gültekin, Seyfettin Sinan" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Neural Networks for the Calculation of Bandwidth of Rectangular Microstrip Antennas
    (2003) Gültekin, Seyfettin Sinan; Güney, Kerim; Sağıroğlu, Şeref
    Neural models for calculating the bandwidth of electrically thin and thick rectangular microstrip antennas, based on the multilayered perceptrons and the radial basis function networks, are presented. Thirteen learning algorithms, the conjugate gradient of Fletcher-Reeves, Levenberg-Marquardt, scaled conjugate gradient, resilient backpropagation, conjugate gradient of Powell-Beale, conjugate gradient of Polak-Ribiére, bayesian regularization, one-step secant, backpropagation with adaptive learning rate, Broyden-Fletcher-Goldfarb-Shanno, backpropagation with momentum, directed random search and genetic algorithm, are used to train the multilayered perceptrons. The radial basis function network is trained by the extended delta-bar-delta algorithm. The bandwidth results obtained by using neural models are in very good agreement with the experimental results available in the literature. When the performances of neural models are compared with each other, the best results for training and test were obtained from the multilayered perceptrons trained by the conjugate gradient of Powell-Beale and Broyden-Fletcher-Goldfarb-Shanno algorithms, respectively.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Neural Networms for the Calculation of Bandwidth of Rectangular Microstrip Antennas
    (Applied Computational Electromagnetics Soc, 2003) Gültekin, Seyfettin Sinan ; Güney, Kerim; Sağıroğlu, Şeref
    Neural models for calculating the bandwidth of electrically thin and thick rectangular microstrip antennas, based on the multilayered perceptrons and the radial basis function networks, are presented. Thirteen learning algorithms, the conjugate gradient of Fletcher-Reeves, Levenberg-Marquardt, scaled conjugate gradient, resilient backpropagation, conjugate gradient of Powell-Beale, conjugate gradient of Polak-Ribiere, bayesian regularization, one-step secant, backpropagation with adaptive learning rate, Broyden-Fletcher-Goldfarb-Shanno, backpropagation with momentum, directed random search and genetic algorithm, are used to train the multilayered perceptrons. The radial basis function network is trained by the extended delta-bar-delta algorithm. The bandwidth results obtained by using neural models are in very good agreement with the experimental results available in the literature. When the performances of neural models are compared with each other, the best results for training and test were obtained from the multilayered perceptrons trained by the conjugate gradient of Powell-Beale and Broyden-Fletcher-Goldfarb-Shanno algorithms, respectively.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim