Yazar "Gangadhar, Katkam N." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe In vitro and in silico approaches to unveil the mechanisms underlying the cytotoxic effect of juncunol on human hepatocarcinoma cells(POLISH ACAD SCIENCES INST PHARMACOLOGY, 2018) Rodrigues, Maria Joao; Vizetto-Duarte, Catarina; Gangadhar, Katkam N.; Zengin, Gökhan; Mollica, Adriano; Varela, Joao; Barreira, LuisaBackground: Juncunol is a phenanthrene isolated from the halophyte species Juncus acutus, with selective cytotoxic activity towards human hepatocarcinoma (HepG2) cells. However, its mechanism of action is unknown. Methods: The in vitro cytotoxic mechanism of juncunol was evaluated on HepG2 cells through several methods to elucidate its potential to induce apoptotic features, decrease mitochondrial membrane potential, promote internal ROS production and influence cell cycle. We also report its haemolytic activity on human erythrocytes and in silico DNA-binding studies. Results: Juncunol induced an increase in the number of apoptotic cells in a concentration-dependent manner, accompanied by a decrease in the mitochondrial membrane potential. Nosignificant differences were observed in production of reactive oxygen species (ROS). Moreover, juncunol application at the IC50 value significantly induced cell cycle arrest in the G0/G1 phase comparatively to the control group. No significant haemolysis was detected. In silico studies indicate that juncunol seems to bind between GC base pairs. Conclusion: Juncunol reduced HepG2 cells proliferation through the induction of apoptotic cellular death, in a concentration-dependent manner. Apoptosis induction seems to be related with a decrease of the mitochondrial membrane potential but not with ROS production. Juncunol had no haemolytic activity and may act as a DNA intercalator. Our data suggests juncunol as a suitable candidate for more detailed studies, including in vivo experiments, in order to completely characterize its mode of action. (c) 2018 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.Öğe Juncaceae species as sources of innovative bioactive compounds for the food industry: In vitro antioxidant activity, neuroprotective properties and in silico studies(PERGAMON-ELSEVIER SCIENCE LTD, 2017) Rodrigues, Maria Joao; Gangadhar, Katkam N.; Zengin, Gökhan; Mollica, Adriano; Varela, Joao; Barreira, Luisa; Custodio, LuisaSeveral Juncus species are traditionally used as sedative and to treat health problems like insomnia. This work was based on the hypothesis that Juncus acutus, J. maritimus and J. inflexus may have molecules with bioactivities relevant for the improvement of cognitive functions and thus with potential use as food additives and/or nutraceuticals. Therefore leaves and roots extracts of those species were evaluated for radical scavenging (RSA) and metal chelating activities, and for in vitro inhibition of acetyl-(AChE) and butyrylcholinesterase (BuChE). The bioactive compound was isolated and identified by HPLC-DAD, and its anticholinesterase capacity was determined by different assays. Docking studies were performed to elucidate its inhibitory mechanism. The dichloromethane root extract of J. acutus had the highest RSA against DPPH and ABTS radicals, and the dichloromethane extract of J. maritimus leaves had the uppermost FRAP. The dichloromethane extract from J. acutus leaves had the strongest BuChE inhibition. Juncunol was the bioactive compound, exhibiting dual anticholinesterase capacity on enzyme-based assays and AChE inhibition in neuronal and glial cells in vitro. Molecular docking studies indicate juncunol as a competitive reversible inhibitor. Our results suggest that Juncus spp. can be sources of bioactive compounds with application in the food industry as cognitive-enhancer nutraceuticals. (C) 2017 Elsevier Ltd. All rights reserved.