Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gubes, Murat" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Application of Differential Transform Method for El Nino Southern Oscillation (ENSO) Model with compared Adomian Decomposition and Variational Iteration Methods
    (JOURNAL MATHEMATICS & COMPUTER SCIENCE-JMCS, 2015) Gubes, Murat; Peker, H. Alpaslan; Oturanc, Galip
    We consider two nonlinear El Nino Southern Oscillation (ENSO) model to obtain approximate solutions with differential transform method for the first time. Efficiency, accuracy and error rates of solutions are compared with analytic solution, variational iteration and adomian decomposition solutions on the given tables and figures.
  • Küçük Resim Yok
    Öğe
    A new calculation technique for the Laplace and Sumudu transforms by means of the variational iteration method
    (SPRINGER HEIDELBERG, 2019) Gubes, Murat
    The aim of this study is to calculate the well-known Laplace and Sumudu transforms of functions in a different way. For our purpose, we present a computational tool by applying the variational iteration method. The Laplace and Sumudu transforms of some of the basic functions are also given as illustrations to test the efficiency and reliability of the proposed computational method.
  • Küçük Resim Yok
    Öğe
    Numerical solution of time-dependent Foam Drainage Equation (FDE)
    (UNIV TABRIZ, 2015) Gubes, Murat; Keskin, Yildiray; Oturanc, Galip
    Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear partial differential equations (PDEs), it can be applied very easily and it has less computational work than other existing methods like Adomian decomposition and Laplace decomposition. Additionally, effectiveness and precision of RDTM solutions are shown in tables and graphically.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim