Yazar "Hassani, Ferri" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A review of explosive-free rock breakage (EFRB) technologies in mining industry(Selçuk Üniversitesi, 2020) Hassani, Ferri; Rafezi, Hamed; Deyab, Samir M.There are strategic drivers within the mining industry which are making explosive-free rock breakage approaches an option that is being reconsidered for the excavation of rock masses. A comprehensive review of the performance and related aspects of explosive-free rock breaking (EFRB) technologies is necessary to assess and demonstrate their applicability in the mining industry, particularly in continuous operations and autonomous mining. Additionally, it would facilitate a clear path of research and development. A comprehensive review of rock breakage technologies and expert projects would also provide sufficient understanding from available information and expert opinions of the advantages, limitations, and broad performance specifications of existing and promising EFRB methods for open pit and underground mining applications. The main EFRB technologies include mechanical cutting, microwave, laser, fluid, thermal and electrical applications. Finally, the application of microwave irradiation of rocks has been conducted successfully in the laboratory as a high potential concept. The approach can be expanded to full-scale field implementation as a pre-conditioning tool to facilitate the mechanical breakdown of rock in a continuous fashion as well as possible destressing of rock under high stress. A reduction in mechanical strength of rocks as a result of microwave irradiation could improve the performance of rock excavation equipment such as a tunnel boring machine. This will be increasing the rate of penetration and reducing operation time.Öğe The effect of microwave irradiation on the mechanical properties of kimberlite and limestone(Selçuk Üniversitesi, 2020) Deyab, Samir M.; Rafezi, Hamed; Hassani, Ferri; Sasmito, Agus P.; Kermani, MehrdadIn underground excavation, rock fragmentation can be achieved by blasting with explosive materials or using continuous excavation machinery. The significant challenges with the explosives include noise, vibration, pollution, and potential issues such as damage to nearby structures. A less disruptive method for breaking rocks is using machines such as tunnel boring machine and road header those have the capability of continuous operation and are suitable for autonomous mining. In hard rock applications, the excavation machinery is associated with high equipment wear rates, low penetration rates and consequently high operating costs. This paper investigates the work being undertaken at McGill University on the effect of microwave (MW) irradiation on hard rocks to facilitate continuous mining and improve the production rate while reducing costs. Tuffistic Kimberlite (TK) and limestone rocks were studied in this research. Physical properties of untreated samples were measured, and the rock samples were treated for various exposure times in a multi-mode MW unit at power levels ranging from 2 to 10 kW. The results indicate that MW irradiation reduced the strength of TK and limestone rocks. It was concluded that Brazilian Tensile Strength (BTS) and Uniaxial Compressive Strength (UCS) of samples decayed proportionally with exposure time and power level.