Yazar "Khan, Mohd Kamran." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Boron application affecting the yield and fatty acid composition of soybean genotypes(CZECH ACADEMY AGRICULTURAL SCIENCES, 2019) Hamurcu, Mehmet.; Arslan, Derya.; Hakki, Erdogan E.; Ozcan, M. Musa.; Pandey, Anamika.; Khan, Mohd Kamran.; Gezgin, SaltThe effects of different boron (B) dosages (0, 2 and 12 mg B/kg) were determined on four soybean (Glycine max (L.) Merr.) cultivars, namely 13935, Turksoy, ME 3399 and Deficiency. B contents of the dried plant samples, dry weight, total oil, biomass, seed yield (g/pot), seed protein contents and seed fatty acid compositions were estimated. The seed protein content and shoot dry weight of soybean cultivars increased and decreased with B supply, respectively. The seed oil of cv. Turksoy had the highest ratio of stearic and oleic acids under 2 mg B/kg treatment. The highest total oil content under 12 mg B/kg treatment was observed in cv. Deficiency with 8% higher total oil content. The ratio of saturated fatty acids to unsaturated fatty acids decreased in cvs. 13935 and ME 3399, and increased in cvs. Turksoy and Deficiency at B treatments. Seeds oil of cvs. 13935 and ME 3399 showed the highest a-linolenic acid levels under 2 mg B/kg and 12 mg B/kg soil treatment, respectively. The study revealed that high concentrations of boron had a diminishing effect on seed yield (except cv.Turksoy), increasing effect on protein content and variable effect on saturated and unsaturated fatty acid compositions. This specifies the involvement of boron in the formation of seed protein and fatty acids in soybean. However, detailed research is required to understand the mechanisms behind the process.Öğe Combined boron toxicity and salinity stress—An insight into its interaction in plants(MDPI, 2019) Pandey, Anamika.; Khan, Mohd Kamran.; Hakki, Erdogan Esref.; Gezgin, Sait.; Hamurcu, Mehmet.The continuously changing environment has intensified the occurrence of abiotic stress conditions. Individually, boron (B) toxicity and salinity stress are well recognized as severe stress conditions for plants. However, their coexistence in arid and semi-arid agricultural regions has shown ambiguous effects on plant growth and development. Few studies have reported that combined boron toxicity and high salinity stress have more damaging effects on plant growth than individual B and salt stress, while other studies have highlighted less damaging effects of the combined stress. Hence, it is interesting to understand the positive interaction of this combined stress so that it can be effectively employed for the improvement of crops that generally show the negative effects of this combined stress. In this review, we discussed the possible processes that occur in plants in response to this combined stress condition. We highly suggest that the combined B and salinity stress condition should be considered as a novel stress condition by researchers; hence, we recommend the name "BorSal" for this combined boron toxicity and high salinity state in the soil. Membrane-bound activities, mobility of ions, water transport, pH changes, transpiration, photosynthesis, antioxidant activities, and different molecular transporters are involved in the effects of BorSal interaction in plants. The discussed mechanisms indicate that the BorSal stress state should be studied in light of the involved physiological and molecular processes that occur after B and salt interaction in plants.