Yazar "Kiziltan, E" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Deep peroneal motor nerve conduction velocity distribution and correlation between nerve conduction groups and the number of innervated muscle fibers(TAYLOR & FRANCIS LTD, 2004) Bayramoglu, FG; Dalkilic, N; Kiziltan, E; Demirel, IIn this study, the distribution of peroneal-nerve conduction velocity was studied in 17 normal subjects, using the collision method. Paired supramaximal stimuli with predetermined interstimalus intervals (ISI) were applied at distal and proximal points of peroneal nerve and the resultant compound muscle action potentials (CMAPs) were recorded. The change in CMAP amplitudes and areas with ISI were deduced, and the relative number of fibers corresponding to each conduction velocity group (CVG) were computed. Conduction velocities of the peroneal motor nerve innervating the Extensor Digitorum Brevis (EDB) muscle were found to be in the range of 28-52 m/s and CVG innervating the greatest number appears to be in 40-48 m/s range, which consists of 70% of all fibers. These results show that, compared with the median motor nerve, deep peroneal motor nerve that innervates the EDB muscle consist of slow fibers.Öğe Does the conduction velocity distribution change along the nerve?(ELSEVIER SCI LTD, 2004) Pehlivan, F; Dalkilic, N; Kiziltan, ENerve conduction velocity distribution (CVD) is a very useful tool to examine the state and function of nerves. Only one record of compound action potential (CAP) may be sufficient to determine the CVD if the shape functions of the single fiber action potentials (SFAP) of fibers are known. Otherwise, CAP recordings from different locations are necessary to determine CVD. In this case, we confront the problem of whether the shape of the CVD changes along the nerve, because many methods that attempt to determine the CVD are based on the assumption that the CVD is invariant along the nerve. There is not a complete solution to this problem, but there are many suggestions allied with the recording conditions to minimise this effect. The other effect that may influence both shapes of CAP and CVD along the nerve is the volume conductor effect. If a suitable model could isolate and eliminate the volume conductor effect, then the spatial variation of CVD may be attributed to the natural conditions of the nerve. In this study, we followed a procedure to eliminate volume conductor effect and then applied our previously published model to examine the spatial variations in CVD. The results show that CVDs estimated at discrete points along the nerve trunk have significantly different patterns. Consequently, it may be concluded that CVD is not uniform along an isolated nerve trunk contrary to the assumptions of the most CVD estimation methods. (C) 2004 IPEM. Published by Elsevier Ltd. All rights reserved.