Yazar "Marjanovic, Nenad" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Inkjet printing and low temperature sintering of CuO and CdS as functional electronic layers and Schottky diodes(ROYAL SOC CHEMISTRY, 2011) Marjanovic, Nenad; Hammerschmidt, Jens; Perelaer, Jolke; Farnsworth, Stan; Rawson, Ian; Kus, Mahmut; Yenel, EsmaHere we report on inkjet printing of a conductive amorphous copper oxide (CuO) ink and of semiconducting cadmium sulfide (CdS) quantum dots under ambient conditions and at low temperature to form functional thin films, which were used for the fabrication of Schottky diodes. Inkjet printed CuO features were sintered using a commercial photonic sintering tool in order to form the diode rectifying contacts. This was accomplished by using the tool's proprietary high-intensity flash lamp at very short pulse durations, ensuring a low processing temperature that favors the usage of low-cost substrates. The photonic sintering method was also used for sintering CdS films, resulting in a more efficient removal of the organic moieties around the CdS nanoparticles than a wet chemical KOH treatment. The here reported process allows the deployment of a low-cost polyethylene terephthalate (PET) polymer foil as the substrate material. The initial results showed modest performance of the fabricated Schottky diode. Nevertheless, the general approaches demonstrate new routes for low temperature manufacturing methods for functional electronic layers based on accordingly developed functional materials utilising amorphous metal oxides and quantum dots.Öğe Magnetite nanoparticles: Synthesis, thin film properties and inkjet printing of magnetic cores for inductor applications(ELSEVIER SCIENCE SA, 2014) Marjanovic, Nenad; Chiolerio, Alessandro; Kus, Mahmut; Ozel, Faruk; Tilki, Serhad; Ivanovic, Nenad; Rakocevic, ZlatkoMagnetic thin films of preferred thickness, patterns, and characteristics were produced using digital printing at room temperature and under ambient conditions to realize magnetic cores for Radio Frequency Identification resonators. The magnetite nanoparticles (Fe3O4) covered with oleic acid were synthesized for that purpose and inkjet printed from chlorobenzene solution on flexible polyimide (PI) substrate and on paper. The obtained nanoparticles have a homogenous morphology, approximately round shape and a size distribution of 7-10 nm. The crystallite size in the films remains the same as in the powder, although aggregation takes place to various extents in the films providing different magnetic properties in each of them. The inkjet printed magnetic cores were investigated in the frequency range from 10 kHz to 11 MHz. Only the magnetic cores printed on PI and annealed at 300 degrees C for 1 h and 2 h exhibit ferromagnetism (mu(r) > 1) at low frequencies, and at higher frequencies all films saturate to mu(r) < 1. For the 300 degrees C-2 h annealed films the mu(r) saturation value is distinctly lower than for other films. mu(r) of the core realized on paper is lower than unity in the entire investigated range of frequencies and very uniform, especially at high frequencies. The presented results put forward the possibility of exploitation of the inkjet printed thin magnetic films in well-established manufacturing industries, such as the watch making, banknote watermarking, and the smart tag production. (C) 2014 Elsevier B.V. All rights reserved.