Yazar "Moura, Arlindo" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Retained acetylated histone four in bull sperm associated with fertility(FRONTIERS MEDIA SA, 2019) Ugur, Muhammet Rasit; Kutchy, Naseer Ahmad; de Menezes, Erika Bezerra; Ul-Husna, Asma; Haynes, Bethany Peyton; Uzun, Alper; Kaya, Abdullah; Topper, Einko; Moura, Arlindo; Memili, ErdoganBull fertility, ability of the sperm to fertilize and activate the egg and support embryo development, is vital for cattle reproduction and production. Even though majority of histories are replaced by protamines, some histories are retained in sperm. It is known that chromatin remodeling during spermatogenesis results in dynamic changes in sperm chromatin structure through post-translational modifications (PTM) of sperm histones, which are important for regulation of gene expression. However, amounts of sperm Histone 4 (H4), its acetylated form (H4 acetyl), and to what extent these molecular attributes influence sperm chromatin structure and bull fertility are unknown. These gaps in the knowledge base are important because they are preventing advances in the fundamental science of bovine male gamete and improvement of bull fertility. The objective of this study was to test the hypothesis that expression dynamics as well as PTM of sperm H4 are associated with bull fertility. Flow cytometry was utilized to quantify H4 and H4 acetylated form in sperm from seven high and seven low fertility Holstein bulls. The results indicated that the average number of cells with H4 or H4 acetyl expression in high and low fertility bull sperm were 34.6 +/- 20.4, 1.88 +/- 1.8, 15.2 +/- 20.8, and 1.4 +/- 1.2, respectively. However, the sperm enriched in both H4 and H4 acetyl were different between high and low fertility groups (3.5 +/- 0.6; 1.8 +/- 0.8; P = 0.043). The localization and detection of H4 and H4 acetylation were measured by immunocytochemistry which revealed that H4 and H4 acetylation were equally distributed in the sperm head of high and low fertility sires. Western blotting results confirmed the presence of the H4 and its acetylated form in the sperm. Bioinformatics studies demonstrated that H4 is highly conserved among mammalians, and have significant gene ontology on spermatogenesis, early embryo implantation, and sperm capacitation. The results are significant because it demonstrates the replacement of canonical histone H4 into modified H4 acetylation in sperm and regulate its dynamics which is crucial for bull fertility and reproductive biotechnology. These findings advance fundamental science of mammalian early development and reproductive biotechnology.Öğe Testis specific histone 2B is associated with sperm chromatin dynamics and bull fertility-a pilot study(BMC, 2017) Kutchy, Naseer A.; Velho, Ana; Menezes, Erika S. B.; Jacobsen, Marie; Thibaudeau, Giselle; Wills, Robert W.; Moura, ArlindoBackground: Bull fertility is the degree of sperm's ability to fertilize and activate the egg and support embryo development, and this is critical for herd reproductive performance. We used the bull as a unique model organism for the study of male fertility because cattle genetics and physiology is similar to those of other mammals including humans. Moreover, reliable fertility data along with well-established in vitro systems are available for bovine. The objective of this original study was to ascertain evolutionary diversification and expression dynamics of Testis Specific Histone 2B (TH2B) in sperm from Holstein bulls with different fertility scores. Methods: The intensity of TH2B was determined by using flow cytometry in sperm from 13 high and 13 low fertility bulls. Expression levels of TH2B were measured using immunofluorescence and Western blotting in sperm from five high and five low fertility bulls. Sequence identity, evolutionary distance and interactome of TH2B were evaluated by dotmatcher, STRING and Cytoscape. Data were analyzed using linear mixed effects model and regression plots were drawn. Results: The intensity of TH2B as measured by flow cytometry was significantly affected by an interaction between fertility group and fertility score (P = 0.0182). The intensity of TH2B in sperm from the high fertility group decreased (P = 0.0055) as fertility increased. TH2B was constantly detectable in sperm and expression levels of TH2B decreased in relation to fertility in sperm from the high fertility group (P = 0.018). TH2B biological functions include male gamete generation, chromosome organization, DNA packaging, DNA conformation change, chromatin organization, nucleosome organization, chromatin disassembly, spermatid nucleus elongation, spermatid nucleus differentiation, sperm motility, chromatin organization, chromatin condensation, chromatin silencing, nucleus organization, and chromatin remodeling (P < 0.05). Conclusions: We elucidated the cellular localization and molecular physiology of TH2B using both computational and cell biology approaches. In addition to advancing the fundamental science of mammalian male gamete, the present findings can be potentially used to evaluate semen quality and predict male fertility in the future.