Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ozturk, T." seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Boron compounds as hydrogen storage materials
    (TAYLOR & FRANCIS INC, 2007) Ozturk, T.; Demirbas, A.
    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. Hence, hydrogen storage is very important for humans. Hydrogen storage in metal hydrides is considered as one of the most attractive methods. In the present work, the hydrogen absorption-desorption behavior of the boron compounds has been compared. We present recent developments in the search for hydrogen-storage capacity of boron. Boron compounds have a very high energy density, much better than that of liquid hydrogen and also a lot safer. LiBH4 is a complex hydride that consists of 18 mass% of hydrogen. It has stability compared with other chemical hydrides and an easy conversion to H-2. Thus, there are a good many reasons that hydrogen-storage materials for LiBH4 will be used in the future at many ranges for power sources. The future warrants further investigations of the B-H system from the viewpoint of hydrogen energy storage.
  • Küçük Resim Yok
    Öğe
    Edge state distribution in an Aharonov-Bohm electron interferometer in the integer quantum Hall regime
    (IOP PUBLISHING LTD, 2011) Ozturk, T.; Kavruk, A. E.; Ozturk, A.; Atav, U.; Yuksel, H.
    In this study we analyze the density distributions of the two dimensional electron system for an experimental geometry which is topologically equivalent of an Aharonov-Bohm interferometer in three dimensions in the quantum Hall regime and obtain the spatial distribution of the edge states. We employ the Thomas-Fermi approximation in our analysis and solve the Poisson equation in three dimensional using a multi grid technique. Also we obtain the distribution of incompressible strips for a wide range of magnetic fields strengths and comment on their relation with experimental results in literature.
  • Küçük Resim Yok
    Öğe
    Influence of helical spin structure on the magnetoresistance of an ideal topological insulator
    (IOP PUBLISHING LTD, 2017) Ozturk, T.; Field, R. L., III; Eo, Y. S.; Wolgast, S.; Sun, K.; Kurdak, C.
    In an ideal topological insulator, the helical spin structure of surface electrons suppresses backscattering and thus can enhance surface conductivity. In this study, we investigate the effect of perpendicular magnetic field on the spin structure of electrons at the Fermi energy and define a magnetic-field dependent topological enhancement factor using Boltzmann transport and calculate this factor for different disorder potentials, ranging from short-range disorder to screened Coulomb potential. Within the Boltzmann approximation, the topological enhancement factor reaches its maximum value of 4 for a short-range disorder at zero magnetic field and approaches a value of 1 at high magnetic fields. The topological enhancement factor becomes independent of the nature of the disorder potential at high magnetic fields.
  • Küçük Resim Yok
    Öğe
    The self-consistent calculation of the edge states in bilayer quantum Hall bar
    (IOP PUBLISHING LTD, 2011) Kavruk, A. E.; Ozturk, T.; Ozturk, A.; Atav, U.; Yuksel, H.
    In this study, we present the spatial distributions of the edge channels for each layer in bilayer quantum Hall bar geometry for a wide range of applied magnetic fields. For this purpose, we employ a self-consistent Thomas-Fermi-Poisson approach to obtain the electron density distributions and related screened potential distributions. In order to have a more realistic description of the system we solve three dimensional Poisson equation numerically in each iteration step to obtain self consistency in the Thomas-Fermi-Poisson approach instead of employing a "frozen gate" approximation.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim