Yazar "Pereira, Patricia N. R." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Adhesive Sealing of the Pulp Chamber(Elsevier Science Inc, 2001) Belli, Sema; Zhang, Yi; Pereira, Patricia N. R.; Pashley, David H.The purpose of this in vitro study was to evaluate quantitatively the ability of four different filling materials to seal the orifices of root canals as a secondary seal after root canal therapy. Forty extracted human molar teeth were used. The top of pulp chambers and distal halves of the roots were removed using an Isomet saw. The canal orifices were temporarily sealed with a gutta-percha master cone without sealer. The pulp chambers were then treated with a self-etching primer adhesive system (Clearfil SE Bond), a wet bonding system (One-Step), a 4-methacryloyloxyethyl trimellitate anhydride adhesive system (C&B Metabond), or a reinforced zinc oxide-eugenol (IRM). The specimens were randomly divided into four groups of 10 each. A fluid filtration method was used for quantitative evaluation of leakage. Measurements of fluid movement were made at 2-min intervals for 8 min. The quality of the seal of each specimen was measured by fluid filtration immediately and after I day, 1 wk, and 1 month. Even after I month the resins showed an excellent seal. Zinc oxide-eugenol had significantly more leakage when compared with the resin systems (p < 0.05). Adhesive resins should be considered as a secondary seal to prevent intraorifice microleakage.Öğe Regional Bond Strengths of Adhesive Resins to Pulp Chamber Dentin(LIPPINCOTT WILLIAMS & WILKINS, 2001) Belli, Sema; Zhang, Yi; Pereira, Patricia N. R.; Özer, Füsun; Pashley, David H.Microleakage of oral microorganisms, which can occur due to the lack of sealing ability of permanent restorative materials, may cause failure of root canal treatments. Although a great deal of research has been done on sealing enamel and coronal dentin with resins, little research has been done on the adhesion of resins to the walls of pulp chambers. The purpose of this study was to evaluate regional bond strengths of two adhesive systems to the walls of pulp chambers. A section was made horizontally through the middle of the pulp chamber of extracted human third molars to divide the chamber into upper and lower halves. The pulp tissue was removed and the tooth segments were then divided into treatment subgroups. The pulp chambers were bonded with C&B Metabond (Parkell) or One-Step (Bisco), with or without 5% NaOCl pretreatment. The microtensile bond strengths of these resins to four different pulp chamber regions (bottom, wall, roof, and pulp horn areas) were then measured using an Instron machine. The data were expressed in MPa and were analyzed by a three-way ANOVA. Statistically significant differences were found among the test groups (p < 0.001). One-Step produced higher bond strengths to all pulp chamber regions except the floor, compared with C&B Metabond. The results indicated that high bond strengths can be achieved between adhesive resins and the various regions of the pulp chamber. This should permit the use of a thick layer of unfilled resin along the floor of the pulp chamber and over the canal orifices as a secondary protective seal after finishing root canal therapy.Öğe Regional Bond Strengths of Adhesive Resins to Pulp Chamber Wall(Amer Assoc Dental Research, 2001) Belli, Sema; Zhang, Yi; Pereira, Patricia N. R.; Özer, Füsun; Pashley, David H.Microleakage of oral microorganisms, which can occur due to the lack of sealing ability of permanent restorative materials, may cause failure of root canal treatments. Although a great deal of research has been done on sealing enamel and coronal dentin with resins, little research has been done on the adhesion of resins to the walls of pulp chambers. The purpose of this study was to evaluate regional bond strengths of two adhesive systems to the walls of pulp chambers. A section was made horizontally through the middle of the pulp chamber of extracted human third molars to divide the chamber into upper and lower halves. The pulp tissue was removed and the tooth segments were then divided into treatment subgroups. The pulp chambers were bonded with C&B Metabond (Parkell) or One-Step (Bisco), with or without 5% NaOCl pretreatment. The microtensile bond strengths of these resins to four different pulp chamber regions (bottom, wall, roof, and pulp horn areas) were then measured using an Instron machine. The data were expressed in MPa and were analyzed by a threeway ANOVA. Statistically significant differences were found among the test groups (p < 0.001). One-Step produced higher bond strengths to all pulp chamber regions except the floor, compared with C&B Metabond. The results indicated that high bond strengths can be achieved between adhesive resins and the various regions of the pulp chamber. This should permit the use of a thick layer of unfilled resin along the floor of the pulp chamber and over the canal orifices as a secondary protective seal after finishing root canal therapy.