Yazar "Saritas, Ismail." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Computer-aided diagnosis system for detection of stomach cancer with image processing techniques(SPRINGER, 2019) Yasar, Ali.; Saritas, Ismail.; Korkmaz, Huseyin.Stomach cancer is a type of cancer that is hard to detect at an early stage because it gives almost no symptoms at the beginning. Stomach cancer is an increasing incidence of cancer both in the World as well as in Turkey. The most common method used worldwide for gastric cancer diagnosis is endoscopy. However, definitive diagnosis is made with endoscopic biopsy results. Diagnosis with endoscopy is a very specific and sensitive method. With high-resolution endoscopy it is possible to detect mild discolorations, bulges and structural changes of the surface of the mucosa. However, because the procedures are performed with the eye of a doctor, it is possible that the cancerous areas may be missed and / or incompletely detected. Because of the fact that the cancerous area cannot be completely detected may cause the problem of cancer recurrence after a certain period of surgical intervention. In order to overcome this problem, a computerized decision support system (CDS) has been implemented with the help of specialist physicians and image processing techniques. The performed CDS system works as an assistant to doctors of gastroenterology, helping to identify the cancerous area in the endoscopic images of the scaffold, to take biopsies from these areas and to make a better diagnosis. We believe that gastric cancer will be helpful in determining the area and biopsy samples taken from the patient will be useful in determining the area. It is therefore considered a useful model.Öğe Towards a real-time sorting system: Identification of vitreous durum wheat kernels using ANN based on their morphological, colour, wavelet and gaborlet features(ELSEVIER SCI LTD, 2019) Kaya, Esra.; Saritas, Ismail.Wheat is the main ingredient of most common food products in our daily lives and obtaining good quality wheat kernels is an important matter for the production of food supplies. In this study, type-1252 durum wheat kernels which have vast harvest areas in Turkey and is the principal ingredient of pasta and semolina products were examined and classified to obtain top quality wheat kernels based on their vitreousness. Also, top quality provision of food supplies means that the products must be refined from all foreign materials so a classification process has been applied to extract foreign materials from wheat kernels. In this study, we have used a total of 236 morphological, colour, wavelet and gaborlet features to classify vitreous, starchy durum wheat kernels and foreign objects by training several Artificial Neural Networks (ANNs) with different amount of features based on the feature rank list obtained with ANOVA test. The data we have used in this study was video images of wheat kernels and foreign objects present on a conveyor belt camera system with illumination provided by daylight colour powerleds. The maximum classification accuracy was 93.46% obtained with 210 feature neural network function which was generated and applied on the video containing a mixture of wheat kernels and foreign objects.