Yazar "Sen, Muhammed Arif" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Optimisation of a PID controller for a two-floor structure under earthquake excitation based on the bees algorithm(SAGE PUBLICATIONS LTD, 2018) Sen, Muhammed Arif; Tinkir, Mustafa; Kalyoncu, MeteThe control of vibration and displacement in structures under seismic excitation is very challenging, and designing a structural control system against disturbances has drawn great attention. This paper concentrates on implementing the bees algorithm to tune gains of traditional PID controller for active vibration control of a building-like structure with two floors under Northridge Earthquake excitation. Bees algorithm is a diverse method to ensure an efficient solution for optimisation of a controller according to customary trial-error design methods. The main aim of this study is optimisation of K-P, K-I and K-D gains with bees algorithm in order to obtain a more effective PID controller to suppress vibrations of the floors during the earthquake excitation. After definition of the system and bees algorithm, PID controller offline tuned with bees algorithm using mathematical model of system. Moreover, the aim is to compare the performances of the BA with an existing optimisation method, genetic algorithm (GA), implemented on the system. The paper presents the experimental results that were obtained from the structure system to show the efficiency of the tuned PID controller. As a result, the performance and effectiveness of the tuned PID controller are investigated and verified experimentally. The displacements and accelerations of the floors and the cart are decreased considerably. The experimental responses of the system are given in graphical form.Öğe Tuning of LQR controller for an experimental inverted pendulum system based on The Bees Algorithm(JVE INT LTD, 2016) Bilgic, Hasan Huseyin; Sen, Muhammed Arif; Kalyoncu, MeteStabilizing of an inverted pendulum (IP) system is a main problem for researchers working on control theory. Balancing of an inverted pendulum system is one of the major benchmark problems in the control system community. This paper presents optimal tuning of linear quadratic regulator (LQR) controller with The Bees Algorithm (BA) for a linear inverted pendulum. In this paper, a metaheuristic approach which is a nature-inspired search method that mimics the foraging behavior of honey bees is used for design of LQR controller to obtain optimal performance. In LQR controller design, state (Q) and control (R) weighting matrices are basic parameters of LQR which are tuning by designer using trial and error method in usually. The Bees Algorithm optimizes the weighting matrices of the LQR controller so that it can move the cart to a desired position with the minimum change in pendulum's angle from vertically upright position during the movement. The tuned LQR controller is benchmarked on the linear inverted pendulum experimental device (IP02) that is manufactured by QUANSER Company. After description of the system and The Bees Algorithm, the paper gives the experimental results obtained from the IP02 system to demonstrating the efficiency of the tuning of the LQR controller. Simulation and experimental results are given graphically to show the success of controller. As a result of the paper, the performance of LQR controller shows the effectiveness of The Bees Algorithm which is a diversity method for provide an efficient solution to conventional trial and error design approach.