Yazar "Tas, Hatice" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The electronic properties of a core/shell/well/shell spherical quantum dot with and without a hydrogenic impurity(AMER INST PHYSICS, 2012) Tas, Hatice; Sahin, MehmetIn this study, we have performed a detailed investigation of the electronic properties of a core/shell/well/shell multilayered spherical quantum dot, such as energy eigenvalues, wave functions, electron probability distribution, and binding energies. The energy eigenvalues and their wave functions of the considered structure have been calculated for cases with and without an on-center impurity. For this purpose, the Schrodinger equation has been numerically solved by using the shooting method in the effective mass approximation for a finite confining potential. The electronic properties have been examined for different core radii, barrier thicknesses, and well widths in a certain potential. The results have been analyzed in detail as a function of the layer thicknesses and their physical reasons have been interpreted. It has been found that the electronic properties are strongly dependent on the layer thicknesses. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3702874]Öğe The inter-sublevel optical properties of a spherical quantum dot-quantum well with and without a donor impurity(AMER INST PHYSICS, 2012) Tas, Hatice; Sahin, MehmetIn this study, we have investigated the inter-sublevel optical properties of a core/shell/well/shell spherical quantum dot (QD) with the form of quantum dot-quantum well heterostructure. In order to determine the energy eigenvalues and corresponding wave functions, the Schrodinger equation has been solved full numerically by using shooting method in the effective mass approximation for a finite confining potential. The inter-sublevel optical absorption and the oscillator strength between ground (1 s) and excited (1 p) states have been examined based on the computed energies and wave functions. Also, the effect of a hydrogenic donor impurity, located at the center of the multi-shell spherical quantum dot (MSQD), has been researched for different core radii (R-1), shell thicknesses (T-s), and well widths (T-w) in certain potential. It is observed that the oscillator strengths and the absorption coefficients are strongly depend on the core radii and layer thicknesses of the MSQD. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751483]Öğe The intersubband optical properties of a two-electron quantum dot-quantum well heterostructure(ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2015) Aydin, Rasit; Tas, Hatice; Sahin, MehmetIn this paper, both linear and third-order nonlinear optical properties of two-electron in a semiconductor core/shell/well/shell quantum dot (QD) heterostructure for cases with and without a hydrogenic donor impurity have been investigated in a detailed manner as depending on the structure parameters. For this purpose, first, the energy eigenvalues and corresponding wave functions of the structure have been computed as a function of the layer thicknesses by means of the self-consistent solution of the Poisson and Schrodinger equations in envelope function effective mass approximation. Second, using these energy eigenvalues and their wave functions obtained from the calculations, both linear and third-order nonlinear optical properties of the multi-shell QD (MSQD) with two-electron have been determined as a function of the photon energies and shell thicknesses. Also, all procedures mentioned above have been repeated for negatively charged donor impurity (D-) located in the center of the same structure. Finally, obtained results have been presented comparatively for cases with and without the impurity. (C) 2015 Elsevier Ltd. All rights reserved.