Yazar "Tasdemir, Halil Ugur" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Anticancer, antimicrobial, spectral, voltammetric and DFT studies with Cu(II) complexes of 2-hydroxy-5-methoxyacetophenone thiosemicarbazone and its N(4)-substituted derivatives(ELSEVIER SCIENCE SA, 2017) Turkkan, Ercan; Sayin, Ulku; Erbilen, Nesibe; Pehlivanoglu, Suray; Erdogan, Gokce; Tasdemir, Halil Ugur; Saf, Ahmet OzgurNew copper complexes of 2-hydroxy-5-methoxyacetophenone thiosemicarbazone and its N(4)-substituted derivatives were synthesized and characterized by theoretical DFT studies and experimental UV-Vis, FT-IR, EPR spectral analysis, cyclic voltammetry, magnetic susceptibility and conductivity measurements. The DFT calculation results have been used to predict and interpret the experimental results. The geometric parameter G within the range of 7.61-7.86 for all complexes confirms the mononuclear nature of the complexes. The EPR, UV-Vis, DFT studies and obtained bonding parameters show that all the complexes have square planar geometry and their M-L bonds have strong ionic and some in-plane a-bond character. In addition, the experimental and DFT studies showed that HOMO and LUMO energy levels of the complexes may present good electron transporting properties. Also, the investigated Cu(II) complexes were tested for biological activity, proving both in vitro antibacterial and anticancer activity. The complexes exhibited antibacterial activity against Gram positive bacteria S. aureus while exhibiting no activities against gram negative bacteria E. toll and S. gallinarum. The f parameters obtained experimentally by EPR support the antimicrobial activity properties results of the complexes. The evaluations of potential anticancer activity of these complexes were carried out against highly metastatic MDA-MB-231 breast adenocarcinoma cell line by MTT assay. Our results suggest that all tested copper complexes have high cytotoxic effects with the range of 1.76-3.53 mu M IC50 values in vitro. These copper complexes could be considered as potential anticancer agents to counteract drug resistance of metastatic cancer cells. (C) 2016 Elsevier B.V. All rights reserved.Öğe EPR investigation of gamma irradiated single crystal guaifenesin: A combined experimental and computational study(PERGAMON-ELSEVIER SCIENCE LTD, 2016) Tasdemir, Halil Ugur; Sayin, Ulku; Turkkan, Ercan; Ozmen, AyhanGamma irradiated single crystal of Guaifenesin (Glyceryl Guaiacolate), an important expectorant drug, were investigated with Electron Paramagnetic Resonance (EPR) spectroscopy between 123 and 333 K temperature at different orientations in the magnetic field. Considering the chemical structure and the experimental spectra of the gamma irradiated single crystal of guaifenesin sample, we assumed that alkoxy or alkyl-type paramagnetic species may be produced by irradiation. Depending on this assumption, eight possible alkoxy and alkyl-type radicals were modeled and EPR parameters of these modeled radicals were calculated using the B3LYP/6-311+ +G(d,p)-level of density functional theory (DFT). Theoretically calculated values of alkyl-type modeled radical(R3) are in good agreement with experimentally determined EPR parameters of single crystal. Furthermore, simulation spectra which are obtained by using the thepretical initial values are well matched with the experimental spectra. It was determined that a stable C alpha H2 alpha C beta H beta C gamma H2 gamma (R3) alkyl radical was produced in the host crystal as a result of gamma irradiation. (C) 2015 Elsevier Ltd. All rights reserved.Öğe EPR study of gamma-irradiated 2-Bromo-4 '-methoxyacetophenone single crystals(TAYLOR & FRANCIS LTD, 2016) Tasdemir, Halil Ugur; Turkkan, Ercan; Sayin, Ulku; Ozmen, AyhanThe gamma-irradiated single crystals of 2-Bromo-4'-methoxyacetophenone (2B4MA) were investigated using electron paramagnetic resonance (EPR) technique. Density-functional theory calculations were employed to investigate and identify the radicals that have been assumed to be formed upon irradiation of 2B4MA single crystals. The EPR spectra of 2B4MA were recorded at different orientations in the magnetic field at room temperature. Taking into account the chemical structure and experimental spectra of irradiated single crystal of 2B4MA, it was assumed that at least two different radicals were produced in the sample. Following this assumption, six possible radicals were modeled and EPR parameters were calculated by using the DFT, B3LYP/6-311+G(d), for the modeled radicals individually. The calculated hyperfine coupling constants and g-tensors were used as initial values for simulation studies. The three crystallographic axes on the simulated spectra were well matched with experimental spectra for the two modeled radicals. Thus, we identified the R1 type radical and R4 type radical as paramagnetic species produced in gamma-irradiated 2B4MA.