Yazar "Turan M." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Nonsymbiotic and symbiotic bacteria efficiency for legume growth under different stress conditions(Springer International Publishing, 2017) Turan M.; Kitir N.; Elkoca E.; Uras D.; Ünek C.; Nikerel E.; Soğutmaz Özdemir B.In order to achieve maximum crop yields, excessive amounts of expensive fertilizers are applied in intensive farming practices. However, the biological nitrogen fixation via symbiotic and nonsymbiotic bacteria can play a significant role in increasing soil fertility and crop productivity, thereby reducing the need for chemical fertilizers. It is well known that a considerable number of bacterial species, mostly those associated with the plant rhizosphere, are able to exert a beneficial effect on plant growth. The use of those bacteria, often called plant growth-promoting rhizobacteria (PGPR), as biofertilizers in agriculture has been the focus of research for several years. The beneficial impact of PGPR is due to direct plant growth promotion by the production of growth regulators, enhanced access to soil nutrients, disease control, and associative nitrogen fixation. Legumes play a crucial role in agricultural production due to their capability to fix nitrogen in association with rhizobia. Inoculation with nodule bacteria called rhizobia has been found to increase plant growth and seed yields in many legume species such as chickpea, common bean, lentil, pea, soybean, and groundnut. However, both rhizobia and legumes suffer heavily and adversely from various abiotic factors. The impact of different stress factors on both PGPR and legume production is critically reviewed and discussed. © Springer International Publishing AG 2017.Öğe Plant growth promoting rhizobacteria as alleviators for soil degradation(Springer-Verlag Berlin Heidelberg, 2011) Turan M.; Esitken A.; Sahin F.Soil degradation refers to decline in the soil's productivity through deterioration of its physical, chemical, and biological properties. The most important processes and causes of degradation are water-wind erosion, salinization, alkalinization, acidification, and leaching and soil pollution. The rate of soil degradation is directly related to unsuitable land use. While growers routinely use physical and chemical approaches to manage the soil environment to improve crop yields, the application of microbial products for this purpose is less common. However, plant growth promoting rhizobacteria (PGPRs) can prevent the deleterious effects of one or more stressors from the environment. These beneficial microorganisms can be a significant component of management practices to achieve the attainable yield in degraded soil. In such soils, the natural role of stress-tolerant PGPRs in maintaining soil fertility is more important than in conventional agriculture. Besides their role in metal detoxification/removal, salinization, and acidification, rhizobacteria also promote the growth of plants by other mechanisms such as production of growth promoting substances and siderophores. Remediation with PGPRs is called bioremediation in degraded soil and is another emerging low-cost in situ technology (Cohen et al. Int J Green Energy 3:301-312, 2004) employed to remove or alleviate pollutants, salinity, and acidification stress from the degraded land. The efficiency of bioremediation can be enhanced by the judicious and careful application of appropriate heavy metal, salinity, acidity tolerant, and plant growth promoting rhizobacteria including symbiotic nitrogen-fixing organisms. This review presents the results of studies on the recent developments in the utilization of PGPR for direct application in soils degraded with heavy metals, salinity, and acidity under a wide range of agroecological conditions with a view to restore degraded soils and consequently, promote crop productivity in degraded soils across the globe and their significance in bioremediation. © Springer-Verlag Berlin Heidelberg 2012. All rights are reserved.