Yazar "Uyar, Pembegül" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Crepis foetida L. subsp rhoeadifolia (Bleb.) Celak. as a source of multifunctional agents: Cytotoxic and phytochemical evaluation(ELSEVIER SCIENCE BV, 2015) Zengin, Gökhan; Sarıkürkcü, Cengiz; Uyar, Pembegül; Aktümsek, Abdurrahman; Uysal, Şengül; Koçak, Mehmet Sefa; Ceylan, RamazanThe cytotoxic, anticholinesterase, antityrosinase and antioxidant effects of methanol extract from the flower of C. foetida subsp. rhoeadifolia (CFRME) were evaluated. The cytotoxic effect was investigated using HepG2, Caco-2, MCF-7 and MCF-10A cell lines. Enzyme inhibitory activities were tested by spectrophotometric methods. Different chemical assays were used to determine the antioxidant effects. In addition, phenolic constituents were quantified. High-performance liquid chromatographic (HPLC) analysis revealed that chlorogenic acid was the major phenolic component in the extract. The extract showed a strong antiproliferative, antioxidant, and anticholinesterase and antityrosinase effects. These findings suggest that C. foetida subsp. rhoeadifolia may be considered as a source of ingredients that can be used as food supplements. (C) 2015 Elsevier Ltd. All rights reserved.Öğe EVALUATION OF THE CHITOSAN-COATING EFFECTIVENESS ON A DENTAL TITANIUM ALLOY IN TERMS OF MICROBIAL AND FIBROBLASTIC ATTACHMENT AND THE EFFECT OF AGING(INST ZA KOVINSKE MATERIALE I IN TEHNOLOGIE, 2015) Kalyoncuoğlu, Ülkü Tuğba; Yılmaz, Bengi; Güngör, Serap; Evis, Zafer; Uyar, Pembegül; Akça, Gülçin; Kansu, GülayThe aim of this study was to obtain a biocompatible and antimicrobial implant surface by coating Ti6Al4V with chitosan which can be used to create a smooth transmucosal region for a faster and better wound healing and an increased bioactivity. Ti6Al4V plates were first abraded and ultrasonically cleaned and then coated with chitosan. In order to simulate the conditions of an oral environment, a group of coated plates were treated in a thermocycle apparatus. The coatings were evaluated with SEM, EDS, XRD and FTIR spectroscopy. The fibroblastic cell behavior was determined using HGF-1 cells. P. gingivalis was used to assess the effectiveness of chitosan as an antimicrobial coating. It can be said that the Ti6Al4V plates were successfully coated with chitosan, indicated by the presence of the C, H and O elements in the EDS results. There were no significant differences between the XRD patterns of the coated and uncoated plates; however, the characteristic bands of chitosan were observed in the FTIR patterns of both the coated and aged samples. The fibroblast-cell attachment and proliferation were enhanced while the bacterial proliferation was inhibited by the chitosan coating. Chitosan was shown to be a biologically useful material that can be used as the coating material for transmucosal regions of dental implants.