Yazar "Wang, S. L." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Behavior of Polyatomic Molecules in Intense Infrared Laser Beams(American Chemical Society, 1998) Ledingham, K. W. D.; Singhal, R. P.; Smith, D. J.; McCanny, T.; Graham, P.; Kılıç, H. Ş.; Peng, W. X.; Wang, S. L.; Langley, A. J.; Taday, P. F.; Kosmidis, C.In the present Letter we report that a number of polyatomic molecules (M) when irradiated with short pulse lasers <90 fs at 750-790 nm and intensities up to 1015 W cir-2 produce multiply charged parent ions and do not fragment to any great degree. This surprising observation is found in both linear and ring structured molecules and is very similar to the behavior of inert atoms such as xenon under the same irradiation conditions. This is a very different behavior from irradiating with nanosecond pulses at 109 W cm-2 where low-mass fragments dominate the spectrum. For the hydrocarbon molecules presented in this work, there exists an envelope of 2+ ionized peaks, which corresponds to the parent and a number of (M -nH) satellites. This feature is characteristic of these molecules in the intensity region 1014-15 W cm-2 and is interpreted as evidence for tunneling or barrier suppression. Coulomb explosion leading to multiply charged atoms, which is evident for CS2, does not seem to be operating for the larger hydrocarbon molecules.Öğe Multiphoton Ionization and Dissociation of Nitromethane Using Femtosecond Laser Pulses at 375 and 750 Nm(American Chemical Society, 1997) Kılıç, H. S.; Ledingham, K. W. D.; Kosmidis, C.; McCanny, T.; Singhal, R. P.; Wang, S. L.; Smith, D. J.; Langley, A. J.; Shaikh, W.The photochemistry of nitromethane has been studied extensively for many years. Although it is generally agreed that the principal photodissociative process is cleavage of the C-N bond to yield the methyl radical and nitrogen dioxide, there is some evidence of minor competing dissociation channels. A number of different groups have used lasers of different wavelengths, but the results of these studies vary considerably and no clear picture of the minor dissociative channels has yet emerged. The use of femtosecond (fs) duration laser pulses for photoionization of molecules is currently an area of considerable interest, since the process can lead to the efficient production of intact molecular ions. It was felt that femtosecond laser mass spectrometry (FLMS) could provide added information on the dissociation pathways of nitromethane. Laser pulses of 90 fs time duration at wavelengths of 375 and 750 nm, coupled to a time-of-flight mass spectrometer, have been used in this study, and contrary to photoexcitation using nanosecond (ns) pulses, a large parent ion, 61 (CH3-NC2+), is detected together with strong peaks at m/e = 15 (CH3+), 30 (NO+), 46 (NO2+) as well as a number of other minor peaks. This fragmentation pattern can be explained by a predominantly ID (ionization followed by dissociation) route.