Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Botsali, FM" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Mathematical modeling and simulation of a flexible shaft-flexible link system with end mass
    (SWETS ZEITLINGER PUBLISHERS, 2004) Ankarali, A; Kalyoncu, M; Botsali, FM; Sisman, T
    In this study, the equation of motion of a single link flexible robotic arm with end mass, which is driven by a flexible shaft, is obtained by using Hamilton's principle. The physical system is considered as a continuous system. As a first step, the kinetic energy and the potential energy terms and the term for work done by the nonconservative forces are established. Applying Hamilton's principle the variations are calculated and the time integral is constructed. After a series of mathematical manipulations the coupled equations of motion of the physical system and the related boundary conditions are obtained. Numerical solutions of equations of motion are obtained and discussed for verification of the model used.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Vibration analysis of an elastic robot manipulator with prismatic joint and a time-varying end mass
    (SPRINGER HEIDELBERG, 2004) Kalyoncu, M; Botsali, FM
    In this study, vibration analysis of an elastic robot arm sliding in a rotating prismatic joint is investigated. The elastic robot arm is assumed to carry a time varying end mass. The problem is a moving boundary value problem. The equations of motion of the elastic arm are obtained by using Lagrange's equation of motion. Effect of rotary inertia, axial shortening and gravitation has been considered in developing the dynamic model. The equations of motion are obtained in the form of a set of ordinary differential equations by using admissible functions and the principle of separation of variables. Equations of motion are numerically solved by using the Runge-Kutta method. A computer program is developed for computer simulations. Numerical results of computer simulations for tip deflections are presented in graphical form. Physical trends of the obtained numerical results are discussed.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim