Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Civciv, Haci" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A generalization of tridiagonal matrix determinants, Fibonacci and Lucas numbers
    (PERGAMON-ELSEVIER SCIENCE LTD, 2009) Nalli, Ayse; Civciv, Haci
    In this paper, we construct the symmetric tridiagonal family of matrices M(-alpha-beta)(k), k = 1, 2,... whose determinants form any linear subsequence of the Fibonacci numbers. Furthermore, we construct the symmetric tridiagonal family of matrices T(-alpha-beta)(k), k = 1, 2,... whose determinants form any linear subsequence of the Lucas numbers. Thus we give a generalization of the presented in Cahill and Narayan (2004) [Cahill ND, Narayan DA. Fibonacci and Lucas numbers as tridiagonal matrix determinants. Fibonacci Quart 2004;42(3):216-21]. (C) 2007 Elsevier Ltd. All rights reserved.
  • Küçük Resim Yok
    Öğe
    Notes on the (s, t)-Lucas and Lucas Matrix Sequences
    (CHARLES BABBAGE RES CTR, 2008) Civciv, Haci; Turkmen, Ramazan
    In this article, defining the matrix extensions of the Fibonacci and Lucas numbers we start a new approach to derive formulas for some integer numbers which have appeared, often surprisingly, as answers to intricate problems, in conventional and in recreational Mathematics. Our approach provides a new way of looking at integer sequences from the perspective of matrix algebra, showing how several of these integer sequences relate to each other.
  • Küçük Resim Yok
    Öğe
    On the (s,t)-fibonacci and fibonacci matrix sequences
    (CHARLES BABBAGE RES CTR, 2008) Civciv, Haci; Turkmen, Ramazan
    It is always fascinating to see what results when seemingly different areas mathematics overlap. This article reveals one such result; number theory and linear algebra are intertwined to yield complex factorizations of the classic Fibonacci, Pell, Jacobsthal, and Mersenne numbers. Also, in this paper we define a new matrix generalization of the Fibonacci numbers, and using essentially a matrix approach we show some properties of this matrix sequence.

| Selçuk Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Selçuk Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim