A generalization of tridiagonal matrix determinants, Fibonacci and Lucas numbers

Küçük Resim Yok

Tarih

2009

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

PERGAMON-ELSEVIER SCIENCE LTD

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we construct the symmetric tridiagonal family of matrices M(-alpha-beta)(k), k = 1, 2,... whose determinants form any linear subsequence of the Fibonacci numbers. Furthermore, we construct the symmetric tridiagonal family of matrices T(-alpha-beta)(k), k = 1, 2,... whose determinants form any linear subsequence of the Lucas numbers. Thus we give a generalization of the presented in Cahill and Narayan (2004) [Cahill ND, Narayan DA. Fibonacci and Lucas numbers as tridiagonal matrix determinants. Fibonacci Quart 2004;42(3):216-21]. (C) 2007 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Kaynak

CHAOS SOLITONS & FRACTALS

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

40

Sayı

1

Künye