A generalization of tridiagonal matrix determinants, Fibonacci and Lucas numbers
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
PERGAMON-ELSEVIER SCIENCE LTD
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we construct the symmetric tridiagonal family of matrices M(-alpha-beta)(k), k = 1, 2,... whose determinants form any linear subsequence of the Fibonacci numbers. Furthermore, we construct the symmetric tridiagonal family of matrices T(-alpha-beta)(k), k = 1, 2,... whose determinants form any linear subsequence of the Lucas numbers. Thus we give a generalization of the presented in Cahill and Narayan (2004) [Cahill ND, Narayan DA. Fibonacci and Lucas numbers as tridiagonal matrix determinants. Fibonacci Quart 2004;42(3):216-21]. (C) 2007 Elsevier Ltd. All rights reserved.
Açıklama
Anahtar Kelimeler
Kaynak
CHAOS SOLITONS & FRACTALS
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
40
Sayı
1