A generalization of tridiagonal matrix determinants, Fibonacci and Lucas numbers

dc.contributor.authorNalli, Ayse
dc.contributor.authorCivciv, Haci
dc.date.accessioned2020-03-26T17:37:43Z
dc.date.available2020-03-26T17:37:43Z
dc.date.issued2009
dc.departmentSelçuk Üniversitesien_US
dc.description.abstractIn this paper, we construct the symmetric tridiagonal family of matrices M(-alpha-beta)(k), k = 1, 2,... whose determinants form any linear subsequence of the Fibonacci numbers. Furthermore, we construct the symmetric tridiagonal family of matrices T(-alpha-beta)(k), k = 1, 2,... whose determinants form any linear subsequence of the Lucas numbers. Thus we give a generalization of the presented in Cahill and Narayan (2004) [Cahill ND, Narayan DA. Fibonacci and Lucas numbers as tridiagonal matrix determinants. Fibonacci Quart 2004;42(3):216-21]. (C) 2007 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipSelcuk University Scientic Research ProjectsSelcuk Universityen_US
dc.description.sponsorshipThis work is supported by coordinating office of Selcuk University Scientic Research Projects.en_US
dc.identifier.doi10.1016/j.chaos.2007.07.069en_US
dc.identifier.endpage361en_US
dc.identifier.issn0960-0779en_US
dc.identifier.issue1en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage355en_US
dc.identifier.urihttps://dx.doi.org/10.1016/j.chaos.2007.07.069
dc.identifier.urihttps://hdl.handle.net/20.500.12395/23205
dc.identifier.volume40en_US
dc.identifier.wosWOS:000266190700037en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofCHAOS SOLITONS & FRACTALSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.selcuk20240510_oaigen_US
dc.titleA generalization of tridiagonal matrix determinants, Fibonacci and Lucas numbersen_US
dc.typeArticleen_US

Dosyalar