Yazar "Kocyigit, Adem." seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The Au/Cu2WSe4/p-Si photodiode: Electrical and morphological characterization(ELSEVIER SCIENCE SA, 2019) Kocyigit, Adem.; Yıldırım, Murat.; Sarılmaz, Adem.; Ozel, Faruk.Cu2WSe4 nanosheets were synthesized by the hot-injection method and put as interfacial layers between Au metal and p-Si by spin coating technique to investigate their photoresponse and capacitor properties via I-V and C-V measurements, respectively. The XRD were operated to confirm crystalline structure of the Cu2WSe4. The TEM image revealed that the crystalline nanosheet structures of the Cu2WSe4. The I-V measurements were performed under dark and light illumination in the range 20 mW-100 mW light intensities with 20 mW interval. In addition, some diode parameters such as ideality factor, barrier height and series resistance were extracted via a various method and discussed in the details. The C-V measurements were employed for various frequency and voltages. The C-V characteristics of the device confirmed the strong dependence on the frequency and voltage. The results imparted that Au/Cu2WSe4/p-Si can be employed for photodiode, photodetector and capacitor applications. (C) 2018 Elsevier B.V. All rights reserved.Öğe The effect of the triangular and spherical shaped CuSbS2 structure on the electrical properties of Au/CuSbS2/p-Si photodiode(SPRINGER, 2019) Yıldırım, Murat.; Kocyigit, Adem.; Sarılmaz, Adem.; Ozel, Faruk.CuSbS2 (Chalcostibite) crystals were synthesized by the hot-injection method as triangular and spherical shaped structures. The crystals were inserted by spin coating technique as interfacial layers between Au metal and p-Si to investigate their electrical and photoresponse properties via I-V measurements under various light intensities. The XRD measurements were performed to show the crystalline structure of the spherical and triangular CuSbS2. The TEM images confirmed the triangular and spherical particle structures of the CuSbS2 crystals. The I-V measurements were performed under dark, 20-100mW light intensities with 20mW interval for spherical and triangular CuSbS2 photodiodes. In addition, diode parameters were extracted and discussed in the details. The results highlighted that triangular and spherical shaped structures have good photoresponse to the illumination and can be employed in the photodiode and photodetector applications.Öğe Temperature dependent current-voltage characteristics of Al/TiO2/n-Si and Al/Cu:TiO2/n-Si devices(ELSEVIER SCI LTD, 2019) Erdal, Mehmet Okan.; Kocyigit, Adem.; Yıldırım, Murat.We fabricated undoped and Cu doped TiO2 thin films by spin coating technique and employed the films as interfacial oxide layer between the Al and n-type Si to investigate the effect of temperature on the Al/TiO2/n-Si and Al/Cu:TiO2/n-Si devices. For that aim, the I-V measurements were performed in the range of 50 K-400 K by 50 K interval. The devices exhibited good rectifying behavior and thermal response in a wide range temperature. Ideality factor, barrier height and series resistance were calculated from I-V measurements for various temperatures by thermionic emission theory, Norde and Cheung methods and discussed in the details. The obtained results revealed that the device parameters are a strong function of the temperature. The interface states (N-ss) were affected by the changing of the temperatures. The Al/TiO2/n-Si and Al/Cu:TiO2/n-Si devices can be performed for wide range temperatures in various technological applications.Öğe Ternary CuCo2S4 thiospinel nanocrystal-coated photodiode with improved photoresponsivity and acceptance angles for optoelectronic applications(SPRINGER, 2020) Yildirim, Murat.; Kocyigit, Adem.; Sarilmaz, Adem.; Ozel, Sultan Suleyman.; Kus, Mahmut.; Ozel, Faruk.Ternary-structured thiospinels have attracted great attention in recent years for energy applications due to their attractive characteristics such as simple production, earth-abundant components and non-toxic nature. In this work, copper cobalt sulfide (CuCo2S4 or carrollite) thiospinel nanocrystals were synthesized by a hot-injection method, and detailed electrical and optoelectronic characterizations were performed in a Schottky device. The synthesized nanocrystals were used as an interfacial layer between the Au metal and p-Si semiconductor to obtain an Au/CuCo2S4/p-Si device. The structural and morphological characterizations confirmed the crystallinity, nanostructure and composition of the CuCo2S4 nanocrystals. The I-V and C-V measurements were employed to characterize the Au/CuCo2S4/p-Si device for various illumination intensities. The obtained device exhibited good rectifying and photodiode properties as well as good photocapacitance. The Au/CuCo2S4/p-Si device can be used and improved for optoelectronic applications.