Konvolüsyonel sinir ağları kullanılarak çiçek türlerinin sınıflandırılması

dc.contributor.advisorBabaoğlu, İsmail
dc.contributor.authorGhrairi, Elaf Sabri
dc.date.accessioned2020-06-11T11:32:19Z
dc.date.available2020-06-11T11:32:19Z
dc.date.issued2019en_US
dc.date.submitted2019-07-22
dc.departmentEnstitüler, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Ana Bilim Dalıen_US
dc.description.abstractKonvolüsyonel sinir ağları (Convolutional Neural Networks - CNN) yüz tanıma, hasta teşhisi, nesne algılama ve resim sınıflandırma gibi birçok alanda oldukça başarılı olarak kullanılmaktadır. CNN, görüntü veri kümeleri üzerinde sınıflandırma işlemi gerçekleştirir. Önce görüntü veri kümelerini sayısal dizilere çevirir, daha sonra bu sayısal verileri sınıflandırma işlemine tabi tutar. CNN'de oluşturulan model sınıflandırma başarısını doğrudan etkilemektedir, dolayısıyla her görüntü veri kümesine uygun bir CNN modeli tasarlamak gerekmektedir. Bu tez çalışmasında, Kaggle web sitesinden 10 farklı çiçek türünün 210 görüntüsünden oluşan çiçek resimleri veri kümesi ele alınarak, bu çiçek resim veri kümesine uygun bir CNN modeli tasarımı önerilmiştir. Önerilen CNN modeli üzerinde çiçek resim veri kümesinin daha iyi başarı ile sınıflandırma işlemini gerçekleştirmesi için çiçek resimleri üzerinde 4 farklı açıda yansıtma ve döndürme işlemleri ile veri kümesinin büyüklüğü arttırılmıştır. Çiçek resimleri veri kümesi üzerinde hem renkli olarak hem de gri olarak sınıflandırma işlemi yapılmıştır. Önerilen CNN modeli üzerinde sınıflandırma başarıları 5-fold çapraz doğrulama ile elde edildikten sonra renkli veri kümesinin sınıflandırma sonuçları gri sınıflandırma sonuçları ile karşılaştırılmıştır. Deneysel sonuçlara göre önerilen CNN modeli renkli ve gri veri kümeleri için sırasıyla %84 ve %47 test sınıflandırma başarıları elde etmiştir. Elde edilen sınıflandırma test sonuçlarına göre önerilen CNN modeli renkli veri kümesi üzerinde daha iyi bir performans göstermiştir.en_US
dc.description.abstractConvolutional Neural Networks (CNN) is used very successfully in many areas such as face recognition, patient diagnosis, object detection and picture classification. The CNN performs the classification on the image data sets, first converts the image data sets to numerical arrays, then subject the numerical data to the classification process. The model created in CNN directly affects the success of the classification, so it is necessary to design a CNN model suitable for each image data set. In this thesis, a flower image dataset consisting of 210 images of 10 different flower species from Kaggle website is considered and a CNN model design suitable for this flower image dataset is proposed. On the proposed CNN model, the data set was increased implementing 4 different angles of reflection and rotation on the flower images in order to achieve better classification results of the flower image data set. Flower images were graded both in color and gray on the dataset. The classification successes on the proposed CNN model were obtained by 5-fold cross validation and the results of the color data set were compared with the gray classification results. According to experimental results, the proposed CNN model achieved 84% and 47% test classification successes for color and gray data sets, respectively. According to the obtained classification test results, the proposed CNN model performed better on the color dataset.en_US
dc.identifier.citationGhrairi, E. S. (2019). Konvolüsyonel Sinir Ağları Kullanılarak Çiçek Türlerinin Sınıflandırılması. (Yüksek Lisans Tezi). Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12395/39561
dc.language.isotren_US
dc.publisherSelçuk Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectAlexNeten_US
dc.subjectGeri yayılımen_US
dc.subjectKonvolüsyonel Sinir Ağlarıen_US
dc.subjectDerin Öğrenmeen_US
dc.subjectGörüntü Sınıflandırmaen_US
dc.subjectBack propagationen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectDeep Learningen_US
dc.subjectImage Classificationen_US
dc.titleKonvolüsyonel sinir ağları kullanılarak çiçek türlerinin sınıflandırılmasıen_US
dc.title.alternativeClassification of flower species using convolutional neural networksen_US
dc.typeMaster Thesisen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
ELAF SABRI GHRAIRI_removed.pdf
Boyut:
2.35 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Elaf Sabri Ghrairi
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: