Toksik anyon ve katyonların kaliksarenler kullanılarak nanofiltrasyon ve adsorpsiyon teknikleriyle giderilmesi
Yükleniyor...
Dosyalar
Tarih
2006-07-06
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Selçuk Üniversitesi Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışma, polimerik yapıda kaliks[n]aren (n = 4 ve 6) türevlerinin hazırlanarak seçilmiş toksik metal katyonlarının (Co2+, Ni2+, Cu2+, Cd2+, Hg2+ ve Pb2+) ve dikromat anyonunun (Cr2O72-) sorpsiyon çalışmalarında sorbent olarak kullanılmasını ve ayrıca suda çözünen kaliks[n]aren (n = 4 ve 6) türevlerinin sentezlenerek dikromat anyonunun nanofiltrasyon-kompleksleşme metoduyla giderilmesi çalışmalarında ligand olarak kullanılmasını içermektedir. Bu amaçla sorpsiyon çalışmalarında kullanmak için kaliks[n]aren bazlı polimerik sorbentler (6, 8, 9, 10, 15, 20, 24 ve 25) hazırlanırken, nanofiltrasyon-kopleksleşme çalışmalarında kullanmak için ise suda çözünen kaliks[n]aren bileşikleri (27, 28 ve 30) sentezlendi ve hazırlanan bu bileşiklerin yapıları, FTIR, 1H NMR, element analiz, TGA ve SEM gibi yapı analiz teknikleri kullanılarak aydınlatıldı. Sorpsiyon çalışmaları, hem batch-tipi hem de kolon-tipi olmak üzere iki şekilde gerçekleştirildi. Metallerin batch-tipi sorpsiyon çalışmalarında kaliksaren bazlı APS-bağlı polimerler (6, 15 ve 20), polisiloksan polimerleri (8 ve 9) ve kitosan-bağlı polimer (10), tüm metal katyonlarını yüksek oranlarda sorpladı. Buna karşın selüloz-bağlı polimer 24, tüm metal katyonları için etkili olmazken selüloz-bağlı diğer polimer 25, düşük miktarlarda sorpsiyon gösterdi ve bu polimer ile hem sorbent miktarının hem de temas süresinin etkisi incelendi. Sonuçlardan sorbent miktarının ve temas süresinin artmasıyla sorpsiyon veriminin de arttığı gözlendi. Sorbentlerden polimer 6 ve metal olarak ta bakır seçilerek optimum sorpsiyon pH'ı 6,0 olarak tespit edildikten sonra bu pH'ta kesikli kap sorpsiyon çalışması yapıldı ve elde edilen değerlerden Freundlich, Langmuir ve D-R izotermi çizilerek sorpsiyon mekanizması aydınlatılmaya çalışıldı. Ayrıca aynı şekilde farklı sıcaklıklarda yapılan sorpsiyon çalışmaları ile de sorpsiyon termodinamiği incelendi. Metallerin kolon-tipi çalışmalarında da polimer 6 ve bakır metali seçildi. Sonuçlardan breakthrough eğrileri çizildi ve matematiksel modellemeler (Thomas, Yoon-Nelson ve Bohart-Adams) yapılarak sorpsiyon özellikleri değerlendirildi. Dikromat anyonunun farklı pH'lardaki batch-tipi sorpsiyon çalışmalarında ise kaliksaren bazlı APS-bağlı polimerler (6, 15 ve 20), kitosan-bağlı polimer (10) ve selüloz- bağlı polimer 25, özellikle pH 1,5'ta çok yüksek oranlarda, polisiloksan polimerleri (8 ve 9) ise orta oranlarda dikromat anyonunu sorpladı. Buna karşın diğer selüloz-bağlı polimer 24, düşük miktarlarda sorpsiyon gösterdi ve bu polimer ile hem sorbent miktarının hem de temas süresinin etkisi incelendi. Sonuçlardan sorbent miktarının ve temas süresinin artmasıyla sorpsiyon veriminin de arttığı gözlendi. Dikromat anyonunun kolon-tipi çalışmalarında, sorbent olarak polimer 6 ve pH olarak da 1,5 seçildi. Sonuçlardan breakthrough eğrileri çizildi ve matematiksel modellemeler yapılarak sorpsiyon özellikleri değerlendirildi. Nanofiltrasyon-kompleksleşme çalışmaları, sentezlenen suda çözünebilen kaliksarenler kullanılarak dikromat anyonunun sulu çözeltiden giderilmesi için gerçekleştirildi. Bunun için ilk olarak pH 3,0'ün altında suda çözünen p-aminokaliks[4]aren (28) ligand olarak kullanıldı ve dikromat anyonunu sulu çözeltiden %33,3 oranında giderdiği gözlendi. kinci çalışmada ise p-sülfonatokaliks[4]aren (27) ligand olarak kullanıldı ve deney şartlarında pH 9,4'te yüksek oranlarda dikromat anyonunu sulu çözeltiden giderdiği gözlendi. Halka boşluk hacminin önemini incelemek amacıyla p-sülfonatokaliks[6]arenin (30) ligand olarak kullanılması sonucu halka boşluk hacminin de dikromat anyonu giderilmesinde etkili olduğu anlaşıldı.
This study contains the preparation of polymeric calix[n]arene (n = 4 and 6) derivatives and their application in adsorption studies of some selected toxic heavy metal cations and dichromate anion, and also the synthesis of water-soluble calix[n]arene (n = 4 and 6) derivatives and their application in nanofiltration-complexation studies as ligand for the removal of dichromate anion. For this goal firstly new polymeric calix[n]arene-based sorbents (6, 8, 9, 10, 15, 20, 24 and 25) were prepared to use in sorption studies, and also water-soluble calix[n]arene compounds (27, 28 and 30) were synthesized to use in nanofiltration- complexation studies. All compounds prepared above were characterized by FTIR, 1H NMR, elemental analysis, TGA and SEM techniques. The sorption studies were carried out by using both batch and column techniques. In the batch-wise sorption studies of metal cations, calixarene-based polymers (6, 15, and 20), polysiloxane polymers (8 and 9) and chitosan-supported polymer (10) sorbed the all metal cations in high ratios. In spite of this, cellulose-supported polymer 24 did not sorb any of them. Although its sorption yield was low, cellulose-supported polymer 25 was used as sorbent to examine the effect of sorbent dosage and contact time on sorption. From the results, it was observed that sorption yield increased when the sorbent amount and contact time was increased. After the determination of optimum pH as 6,0 by using good sorbent 6 and Cu2+ metal, the cutted-flask sorption study was performed at optimum pH and it was tried to explain the sorption mechanism with Freundlich, Langmuir and D-R isotherms. At the same time it was examined the sorption thermodynamic by carrying out the adsorption studies at different temperatures. For the column sorption studies of metal cations, polymer 6 and Cu2+ metal cation were selected. From the results, breakthrough curves were drawn and sorption properties of 6 for Cu2+ were evaluated by designing mathematical models such as Thomas, Yoon-Nelson and Bohart-Adams. In the the batch-wise adsorption studies of dichromate anion, especially at pH 1,5, calixarene-based polymers (6, 15, and 20), chitosan-supported polymer (10) and cellulose- supported polymer 25 sorbed dichromate anion in very high yields. In case of polysiloxane polymers (8 and 9) sorbed dichromate anion in middle ratios. In spite of this cellulose- supported polymer 24 was performed sorption in low amounts and used in the examination of effect of sorbent dosage and contact time. From the results, it was observed that sorption yield increased when the sorbent amount and contact time was increased. In column adsorption studies of dichromate anion, polymer 6 and pH 1,5 were selected here again. From the results, breakthrough curves were drawn and sorption properties of 6 for dichromate anion at pH 1,5 were evaluated by designing mathematical models such as Thomas, Yoon-Nelson and Bohart- Adams. Naofiltration-complexation studies were carried out by using the synthesized water- soluble calixarenes above for removal of dichromate anion from aqueous solutions. For this goal, preliminary water-soluble p-aminocalix[4]arene (28) under pH 3,0 was used as ligand at pH 2,5 and it was observed that 27 removed dichromate anion in 33,3 percent from aqueous solutions. In second experiment of nanofiltration-complexation studies, p- sulfonatocalix[4]arene (27) was used as ligand and it was observed that 27 removed dichromate anion from aqueous solutions under experimental conditions at pH 9,4, in high ratios. To understand the importance of calixarene cavity, p-sulfonatocalix[6]arene (30) was used as ligand and it was understood that calixarene cavity-size effected the removal of dichromate anion.
This study contains the preparation of polymeric calix[n]arene (n = 4 and 6) derivatives and their application in adsorption studies of some selected toxic heavy metal cations and dichromate anion, and also the synthesis of water-soluble calix[n]arene (n = 4 and 6) derivatives and their application in nanofiltration-complexation studies as ligand for the removal of dichromate anion. For this goal firstly new polymeric calix[n]arene-based sorbents (6, 8, 9, 10, 15, 20, 24 and 25) were prepared to use in sorption studies, and also water-soluble calix[n]arene compounds (27, 28 and 30) were synthesized to use in nanofiltration- complexation studies. All compounds prepared above were characterized by FTIR, 1H NMR, elemental analysis, TGA and SEM techniques. The sorption studies were carried out by using both batch and column techniques. In the batch-wise sorption studies of metal cations, calixarene-based polymers (6, 15, and 20), polysiloxane polymers (8 and 9) and chitosan-supported polymer (10) sorbed the all metal cations in high ratios. In spite of this, cellulose-supported polymer 24 did not sorb any of them. Although its sorption yield was low, cellulose-supported polymer 25 was used as sorbent to examine the effect of sorbent dosage and contact time on sorption. From the results, it was observed that sorption yield increased when the sorbent amount and contact time was increased. After the determination of optimum pH as 6,0 by using good sorbent 6 and Cu2+ metal, the cutted-flask sorption study was performed at optimum pH and it was tried to explain the sorption mechanism with Freundlich, Langmuir and D-R isotherms. At the same time it was examined the sorption thermodynamic by carrying out the adsorption studies at different temperatures. For the column sorption studies of metal cations, polymer 6 and Cu2+ metal cation were selected. From the results, breakthrough curves were drawn and sorption properties of 6 for Cu2+ were evaluated by designing mathematical models such as Thomas, Yoon-Nelson and Bohart-Adams. In the the batch-wise adsorption studies of dichromate anion, especially at pH 1,5, calixarene-based polymers (6, 15, and 20), chitosan-supported polymer (10) and cellulose- supported polymer 25 sorbed dichromate anion in very high yields. In case of polysiloxane polymers (8 and 9) sorbed dichromate anion in middle ratios. In spite of this cellulose- supported polymer 24 was performed sorption in low amounts and used in the examination of effect of sorbent dosage and contact time. From the results, it was observed that sorption yield increased when the sorbent amount and contact time was increased. In column adsorption studies of dichromate anion, polymer 6 and pH 1,5 were selected here again. From the results, breakthrough curves were drawn and sorption properties of 6 for dichromate anion at pH 1,5 were evaluated by designing mathematical models such as Thomas, Yoon-Nelson and Bohart- Adams. Naofiltration-complexation studies were carried out by using the synthesized water- soluble calixarenes above for removal of dichromate anion from aqueous solutions. For this goal, preliminary water-soluble p-aminocalix[4]arene (28) under pH 3,0 was used as ligand at pH 2,5 and it was observed that 27 removed dichromate anion in 33,3 percent from aqueous solutions. In second experiment of nanofiltration-complexation studies, p- sulfonatocalix[4]arene (27) was used as ligand and it was observed that 27 removed dichromate anion from aqueous solutions under experimental conditions at pH 9,4, in high ratios. To understand the importance of calixarene cavity, p-sulfonatocalix[6]arene (30) was used as ligand and it was understood that calixarene cavity-size effected the removal of dichromate anion.
Açıklama
Anahtar Kelimeler
Toksik metaller, Dikromat anyonu, Polimerik kaliksarenler, Adsorpsiyon, Suda çözünen kaliksarenler, Nanofiltrasyon, Toxic metals, Dichromate anion, Polymeric calixarenes, Adsorption, Watersoluble calixarenes, Nanofiltration
Kaynak
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Tabakcı, M. (2006). Toksik anyon ve katyonların kaliksarenler kullanılarak nanofiltrasyon ve adsorpsiyon teknikleriyle giderilmesi. Selçuk Üniversitesi, Yayımlanmış doktora tezi, Konya.