The graph based on Grobner-Shirshov bases of groups
Küçük Resim Yok
Tarih
2013
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
SPRINGER INTERNATIONAL PUBLISHING AG
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Let us consider groups G(1) = Z(k) * (Z(m) * Z(n)), G(2) = Z(k) x (Z(m) * Z(n)), G(3) = Z(k) * (Z(m) x Z(n)), G(4) = (Z(k) * Z(l)) * (Z(m) * Z(n)) and G(5) = (Z(k) * Z(l)) x (Z(m) * Z(n)), where k, l, m, n = 2. In this paper, by defining a new graph Gamma(G(i)) based on the Grobner-Shirshov bases over groups G(i), where 1 <= i <= 5, we calculate the diameter, maximum and minimum degrees, girth, chromatic number, clique number, domination number, degree sequence and irregularity index of Gamma(G(i)). Since graph theoretical studies (including such above graph parameters) consist of some fixed point techniques, they have been applied in such fields as chemistry (in the meaning of atoms, molecules, energy etc.) and engineering (in the meaning of signal processing etc.), game theory and physics. In addition, the Grobner-Shirshov basis and the presentations of algebraic structures contain a mixture of algebra, topology and geometry within the purposes of this journal.
Açıklama
Anahtar Kelimeler
graphs, Grobner-Shirshov bases, group presentation
Kaynak
FIXED POINT THEORY AND APPLICATIONS
WoS Q Değeri
Q1