A note on non-identifibiality problem of finite mixture distribution models in model-based classification

dc.contributor.authorErol, Hamza
dc.date.accessioned2016-12-30T12:05:43Z
dc.date.available2016-12-30T12:05:43Z
dc.date.issued2004
dc.descriptionhttp://sjam.selcuk.edu.tr/sjam/article/view/105en_US
dc.description.abstractThe probability density functions (pdfs) of the mixture distribution models (mdms) for two different populations can be compared by using a distance function (metric) between them in model-based classification applications. The result of the comparison may not be true if the component densities of the mdms are permutation functions. Thus, non-identifibiality problem of finite mixture distribution models. In other words, the order of the component densities of the mdms should be taken into account. If the component densities of the mdms are permutation functions then the pdfs of the mdms for two different population looks like similar but in fact they are completely different. Such a case may cause wrong inference in the applications in which the mdms used, for example in classification applications. The componentwise distance function is proposed for the comparison of the pdfs of the mdms for two different populations if the component densities are permutation functions. The condition under which the value of the distance function between the pdfs of the mdms for two different populations is equal to the value of the componentwise distance function between the pdfs of the mdms for two different populations is given.en_US
dc.identifier.citationErol, H. (2004). A note on non-identifibiality problem of finite mixture distribution models in model-based classification. Selcuk Journal of Applied Mathematics, 5 (1), 3-10.en_US
dc.identifier.endpage10
dc.identifier.issn1302-7980en_US
dc.identifier.startpage3
dc.identifier.urihttps://hdl.handle.net/20.500.12395/3615
dc.identifier.volume5
dc.language.isoenen_US
dc.publisherSelcuk University Research Center of Applied Mathematicsen_US
dc.relation.ispartofSelcuk Journal of Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Kategori Belirleneceken_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectFinite mixture distribution modelen_US
dc.subjectHellinger distanceen_US
dc.subjectModel-based classificationen_US
dc.subjectNon-identifibialityen_US
dc.subjectPermutation functionsen_US
dc.subjectSonlu karışım dağılım modelien_US
dc.subjectHellinger mesafesien_US
dc.subjectModel tabanlı sınıflandırmaen_US
dc.subjectKimliksizliken_US
dc.subjectPermütasyon fonksiyonlarıen_US
dc.titleA note on non-identifibiality problem of finite mixture distribution models in model-based classificationen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
105-202-1-SM.pdf
Boyut:
208.53 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.51 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: