Multilevel image thresholding selection based on grey wolf optimizer
dc.authorid | 0000-0003-1311-5918 | |
dc.authorid | 0000-0001-5890-510X | |
dc.authorid | 0000-0002-2503-1482 | |
dc.contributor.author | Koc, Ismail | |
dc.contributor.author | Baykan, Omer Kaan | |
dc.contributor.author | Babaoglu, Ismail | |
dc.date.accessioned | 2020-03-26T19:54:43Z | |
dc.date.available | 2020-03-26T19:54:43Z | |
dc.date.issued | 2018 | |
dc.department | Selçuk Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description.abstract | Multilevel thresholding is an important image process technique for image processing and pattern recognition. Selecting an optimal threshold value is one of the most crucial phase in image thresholding. While bi-level segmentation contains separating the original image into subdivided sections with help of a threshold value, multilevel segmentation involves multi threshold values. Especially in multilevel image tresholding, the computational time of detailed search increases exponentially with the number of preferred thresholds. For compelling problems, swarm intelligence is known as one of the successful and influential optimization methods. In this paper, the grey wolf optimizer (GWO), a recently proposed swarm-based meta-heuristic which imitates the social leadership and hunting behavior of gray wolves in nature is employed for solving the multilevel image thresholding problem. The experimental results on standard benchmark images indicate that the grey wolf optimizer algorithm is comparable with other state of the art algorithms. | en_US |
dc.identifier.citation | Koç, İ., Baykan, Ö. K., Babaoğlu, İ. (2018). Multilevel Image Thresholding Selection Based on Grey Wolf Optimizer. Journal of Polytechnic-Politeknik Dergisi, 21(4), 841-847. | |
dc.identifier.doi | 10.2339/politeknik.389613 | en_US |
dc.identifier.endpage | 847 | en_US |
dc.identifier.issn | 1302-0900 | en_US |
dc.identifier.issn | 2147-9429 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.pmid | #YOK | en_US |
dc.identifier.startpage | 841 | en_US |
dc.identifier.uri | https://dx.doi.org/10.2339/politeknik.389613 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12395/36785 | |
dc.identifier.volume | 21 | en_US |
dc.identifier.wos | WOS:000448383600010 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.institutionauthor | Koc, Ismail | |
dc.institutionauthor | Baykan, Omer Kaan | |
dc.institutionauthor | Babaoglu, Ismail | |
dc.language.iso | tr | en_US |
dc.publisher | GAZI UNIV | en_US |
dc.relation.ispartof | JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.selcuk | 20240510_oaig | en_US |
dc.subject | Multilevel image thresholding | en_US |
dc.subject | otsu method | en_US |
dc.subject | herd intelligence | en_US |
dc.subject | optimization algorithms | en_US |
dc.subject | gray wolf algorithm | en_US |
dc.title | Multilevel image thresholding selection based on grey wolf optimizer | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- İsmail KOÇ.pdf
- Boyut:
- 1.02 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Full Text Access