Yaşam-zamanı dağılım analizine katkılar
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Bu tezde, iki yeni dağılım önerilmiştir. Bu dağılımların dağılım fonksiyonu, kuantil fonksiyonu, hazard ve ters hazard fonksiyonları, değişim katsayısı, momentleri, çarpıklık ve basıklık katsayıları gibi özellikleri gösterilmiştir. İstatistiksel sonuç çıkarımı en çok olabilirlik metodu ile tartışılmıştır. Nelder-Mead simpleks direkt arama, Pattern arama ve genetik algoritması gibi bazı nümerik metotlar en çok olabilirlik tahminlerinin yaklaşık değerlerini bulmak için kullanılmıştır. Simülasyon çalışmasında, en çok olabilirlik tahminlerinin performansları ve en çok olabilirlik tahminlerinin asimptotik özelliklerine dayalı güven aralıklarının kapsama olasılıkları incelenmiştir. Metodoloji nümerik örneklerle örneklendirilmiştir.
In this thesis, two new distributions are introduced. The distributional properties such as distribution function, quantile function, hazard and reverse hazard functions, moments, coefficient of variation skewness and kurtosis are provided. Statistical inference is discussed by maximum likelihood methodology. Simulation study is performed to investigate the performance of the maximum likelihood estimates and coverage probability of confidence intervals based on asymptotic normality property of maximum likelihood estimates. Several numerical methods such as Nelder-Mead simplex algorithm, Pattern search, simulated annealing algorithm and genetic algorithm are used to get approximate value of maximum likelihood estimates and they are compared. A numerical example is also given to illustrate the methodology.