Generalized Leibniz rule for an extended fractional derivative operator with applications to special functions

dc.contributor.authorGaboury, S.
dc.contributor.authorTremblay, R.
dc.contributor.authorFugère, B. J.
dc.date.accessioned2018-05-08T11:17:19Z
dc.date.available2018-05-08T11:17:19Z
dc.date.issued2011
dc.descriptionURL: http://sjam.selcuk.edu.tr/sjam/article/view/310en_US
dc.description.abstractRecently an extended operator of fractional derivative related to a generalized beta function has been used in order to obtain some generating relations involving extended hypergeometric functions [19]. In this paper, an extended fractional derivative operator with respect to an arbitrary regular and univalent function based on the Cauchy integral formula is defined. This is done to compute the extended fractional derivative of the function log z and principally, to obtain a generalized Leibniz rule. Some examples involving special functions are given. A representation of the extended fractional derivative operator in terms of the classical fractional derivative operator is also determined by using a result of A.R. Miller [12].en_US
dc.identifier.citationGaboury, S., Tremblay, R., Fugère, B. J. (2011). Generalized Leibniz rule for an extended fractional derivative operator with applications to special functions. Selcuk Journal of Applied Mathematics, 12 (2), 119-134.en_US
dc.identifier.endpage134
dc.identifier.issn1302-7980en_US
dc.identifier.startpage119
dc.identifier.urihttps://hdl.handle.net/20.500.12395/10580
dc.identifier.volume12
dc.language.isoenen_US
dc.publisherSelcuk University Research Center of Applied Mathematicsen_US
dc.relation.ispartofSelcuk Journal of Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Kategori Belirleneceken_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.selcuk20240510_oaigen_US
dc.subjectExtended beta functionen_US
dc.subjectFractional derivativesen_US
dc.subjectExtended special functionsen_US
dc.subjectGenişletilmiş beta işlevien_US
dc.subject Genişletilmiş özel işlevleren_US
dc.subjectFraksiyonel türevleren_US
dc.titleGeneralized Leibniz rule for an extended fractional derivative operator with applications to special functionsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
S. Gaboury, R. Tremblay, B. -J. Fugère.pdf
Boyut:
297.84 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.51 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: