Sıvılaşmaya karşı güvenlik katsayısının yapay sinir ağları ile tahmin edilmesi: Denizli-Gümüşler örneği
Yükleniyor...
Tarih
2007
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Depremlerin neden olduğu önemli zemin davranışlarından biri de sıvılaşmadır. Sıvılaşma, suya tamamen doygun kohezyonsuz zeminlerin deprem etkisi ile zeminin içindeki boşluk suyu basıncının artması ve zeminin taşıyıcı özelliğini kaybetmesi sonucu meydana gelir. Sıvılaşma Potansiyeli İndeksi (SPI), sıvılaşmanın yüzeydeki şiddetini göreceli olarak değerlendirmek amacıyla geliştirilmiştir. Sıvılaşma riskinin belirlenmesi için SPI’nin doğru bir şekilde hesaplanması gerekir. Yapay Sinir Ağları (YSA), insan sinir sisteminden esinlenerek geliştirilmiş bir yöntem olup, son yıllarda doğrusal olmayan ve karmaşık mühendislik problemlerinde oldukça başarılı bir şekilde kullanılmaktadır. Bu çalışmada, Denizli ili Gümüşler Belediyesi mücavir alanındaki zeminlerin, sıvılaşma potansiyeli değerlendirilmiş ve YSA yardımı ile sıvılaşmaya karşı Güvenlik Katsayısı (GK) tahmin edilmiştir. GK’nın tahmini için ileri beslemeli sinir ağları kullanılmıştır. Bu amaçla, 7.5 büyüklüğündeki bir deprem için zeminin tekrarlı direnç oranı (CRR7.5), depremin oluşturduğu tekrarlı gerilim oranı (CSR), yeraltı suyu seviyesi, Standart Penetrasyon Deneyi (SPT) derinliği ile darbe sayısı girdi parametreleri olarak seçilmiştir. 21 adet sondaj kuyusuna ait 317 adet verinin 194’ü YSA’nın eğitimi için, 123’ü ise test işlemleri için kullanılmıştır. Test sonuçları ile hesaplanan değerler karşılaştırıldığında, YSA ile elde edilen sonuçların hesaplanan değerlere oldukça yakın çıktığı görülmüştür.
Liquefaction is one of the major natural hazards caused by earthquakes and it can be defined as an increase of pore pressure and lost of bearing capacity of the soils because of a dynamic impact (earthquake). In order to estimate liquefaction potential, Liquefaction Potential Index (LPI) is calculated. LPI has been developed for evaluating the surface impacts of the liquefaction. Artificial Neural Networks (ANN) developed biological human brain system has been recently used for modeling of complex and nonlinear engineering problems. In this study LPI of the Gümüşler Municipality settlement area has been calculated and factor of safety (FS) against liquefaction has been estimated by using ANN. Feed forward type of ANN is employed. The input parameters are cyclic resistance ratio for Mw=7.5 earthquakes (CRR7.5), cyclic stress ratio (CSR), depth of ground water level, depth and N values of standard penetration test. 194 borehole values have been used in training process while 123 data have been used in test procedure. Satisfactory results have been obtained.
Liquefaction is one of the major natural hazards caused by earthquakes and it can be defined as an increase of pore pressure and lost of bearing capacity of the soils because of a dynamic impact (earthquake). In order to estimate liquefaction potential, Liquefaction Potential Index (LPI) is calculated. LPI has been developed for evaluating the surface impacts of the liquefaction. Artificial Neural Networks (ANN) developed biological human brain system has been recently used for modeling of complex and nonlinear engineering problems. In this study LPI of the Gümüşler Municipality settlement area has been calculated and factor of safety (FS) against liquefaction has been estimated by using ANN. Feed forward type of ANN is employed. The input parameters are cyclic resistance ratio for Mw=7.5 earthquakes (CRR7.5), cyclic stress ratio (CSR), depth of ground water level, depth and N values of standard penetration test. 194 borehole values have been used in training process while 123 data have been used in test procedure. Satisfactory results have been obtained.
Açıklama
Url: http://sujest.selcuk.edu.tr/sumbtd/article/view/104
Anahtar Kelimeler
Güvenlik katsayısı, Sıvılaşma potansiyel indeksi, Yapay sinir ağları, Artificial neural networks, Factor of safety, Liquefaction potential index
Kaynak
Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
22
Sayı
Künye
Şen, G., Akyol, E., Fırat, M. (2007). Sıvılaşmaya karşı güvenlik katsayısının yapay sinir ağları ile tahmin edilmesi: Denizli-Gümüşler örneği. Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 22, (1-2), 177-184.